1. Recall that if we let Let $\mathcal{Z}=\{\bullet\}$ with \bullet an atom (of size 1). Then $\mathcal{I}=\operatorname{SEQ}(\mathcal{Z}) \backslash\{\square\}=\{\bullet, \bullet \bullet, \bullet \bullet \bullet, \ldots\}$ is combinatorial way to describe the positive integers in unary notation.
Note: It is worth noting that the counting sequence of \mathcal{I} is $\{0,1,1,1, \ldots\}$.
(a) (6 points) Find the closed form of the ordinary generating function $I(x)$ of \mathcal{I}. This is not a trick QUESTION.

Solution:

$$
I(x)=\frac{x}{1-x}
$$

(b) (7 points) Let k be a positive integer and let

$$
\mathfrak{C}^{(k)}=\operatorname{SEQ}_{k}(\mathcal{I})=\underbrace{\mathcal{I} \times \mathcal{I} \times \cdots \times \mathcal{I}}_{k \text { factors }}
$$

Find the closed form of the ordinary generating function $C^{(k)}(x)$ of $\mathfrak{C}^{(k)}$.

Solution:

By the product rule, $C^{(k)}(x)=(I(x))^{k}=\frac{x^{k}}{(1-x)^{k}}$
(c) (7 points) Find $C_{n}^{(k)}=\left[x^{n}\right] C^{(k)}(x)$.

Solution:

$$
\begin{align*}
C_{n}^{(k)} & =\left[x^{n}\right] \frac{x^{k}}{(1-x)^{k}} \\
& =\left[x^{n}\right] x \frac{x^{k-1}}{(1-x)^{k}} \\
& =\left[x^{n-1}\right] \frac{x^{k-1}}{(1-x)^{k}} \\
& =\binom{n-1}{k-1} \tag{1}
\end{align*}
$$

Remark. The result should look familiar. For $n \geq k, C_{n}^{(k)}$ should count the number of ways to assign n votes to k candidates so that each candidate receives at least one vote since $\square \notin \mathcal{I}$ (see Figure 1).

$$
\begin{aligned}
C_{n}^{(k)} & =\left(\binom{k}{n-k}\right) \\
& =\binom{n-k+k-1}{n-k} \\
& =\binom{n-1}{n-k}
\end{aligned}
$$

which is (1).

Figure 1: Graphical representation of 15 votes distributed between 4 candidates with each candidate receiving at least one vote.

