
Math 482 Quiz 2 Spring 2024

1. (4 points) Prove that the number of integer partitions on n into exactly k parts is equal to the number of
partitions of n in which the largest part is k.

Solution:

Let P ([n]) be the set of integer partitions. Then the map T : P ([n]) −→ P ([n]) defined by
T (λ) = λt that sends the partition λ to its transpose is clearly a bijection since T 2(λ) = λ. In
particular, if λ ⊢ n has exactly k parts, then the largest part of λt = (λt

1, λ
t
2, . . . , λ

t
m
) is λt

1 which
is equal to k. Since T is a bijection, we are done.

2. (4 points) Let p(n) be the number of integer partitions of n. Prove that for all n ≥ 2, the number
q(n) = p(n)− p(n− 1) is equal to the number of integer partitions of n in which the largest parts are equal.
Hint: According to the text, q(n) is also equal to the number of integer partitions in which the smallest block
has size at least two.

Solution:

Note: The hint refers to Theorem 5.20 from the text.

Continuing with the notation above, let λ = (λ1, λ2, . . . , λk) ⊢ n with λ1 = λ2 = m, then λt has
exactly m parts with λt

m
≥ 2 (else λ1 6= λ2). In other words, the set of integer partitions with

equal largest parts is is isomorphic to the set of integer partitions with smallest block size of at
least two. The result now follows from Theorem 5.20.
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n
k

0 1 2 3 4 5 6 7 rn

0 1 1
1 0 1 1
2 0 1 2 3
3 0 1 7 6 14
4 0 1 18 46 24 89
5 0 1 41 228 326 120 716
6 0 1 88 930 2672 2556 720 6967
7 0 1 183 3406 17198 31484 22212 79524
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3. Let n and k be integers. We define the silly coefficients
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together with boundary conditions
∣
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0
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∣ = 1 and
∣
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∣ = 0 whenever n < 0 or k < 0 or k > n. We list a few values
in Table 1.

(a) (4 points) Show that S1(x) =
∑

n≥0
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x
n

n!
= ex − 1.

Solution:

We could appeal to the fact that
∣
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n

1

∣

∣ = 1 for n > 0 (See Table 1). Instead, let’s use the fact that
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∣ = 0 for n > 0, and the recurrence (1). It follows that S0(x) =
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= S1(x) + 1

Rearranging the last equation and multiplying by the integerating factor, e−x produces

D(e−xS1(x)) = e−x

Integrating both sides yeilds

e−xS1(x) = −e−x + C = −e−x + 1 (since S1(0) = 0)

After rearranging we obtain

S1(x) = −1 + ex

as expected.

(b) (8 points) Find the closed form of the exponential generating function S2(x) =
∑

n≥0

∣

∣
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2

∣

∣

x
n

n!
. Hint: We

saw an example of how to do this on Wednesday when we showed that
∑

n≥0

(

n

k

)

x
n

n!
= xk ex/k!.

Warning: The closed form of S2(x) isn’t a particulary nice function.
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Solution:

Proceeding much as we did above, we have

S′
2(x) =

∑

n

∣

∣

∣

∣

n+ 1

2

∣

∣

∣

∣

xn

n!

= 2
∑

n

∣

∣

∣

∣

n

2

∣

∣

∣

∣

xn

n!
+
∑

n

(n+ 1)

∣

∣

∣

∣

n

1

∣

∣

∣

∣

xn

n!

= 2S2(x) +
∑

n

n

∣

∣

∣

∣

n

1

∣

∣

∣

∣

xn

n!
+
∑

n

∣

∣

∣

∣

n

1

∣

∣

∣

∣

xn

n!

= 2S2(x) + xD(S1(x)) + S1(x) (by Rule 3′)

= 2S2(x) + xex + ex − 1

Thus

D(e−2xS2(x) = xe−x + e−x − e−2x

Integrating both sides produces

e−2xS2(x) =
e−2x

2
− (x+ 2)e−x + C =

e−2x

2
− (x+ 2)e−x +

3

2

or

S2(x) =
1

2
− (x+ 2)ex +

3e2x

2

Using any CAS, one can compare the first few terms in the sequence of coefficients of S2(x) to the
relevant column in Table 1 and confirm that they are in agreement.

0, 0, 2, 7, 18, 41, 88, 183, 374, 757, 1524, 3059, . . .
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