1. (10 points) A coach wishes to break up her n-member team into 3 practice squads. Each player on squad A will wear either a red or a blue jersey, those on squad B will wear yellow jerseys numbered from 1 to \mid squad $B \mid$, and squad C players will wear black jerseys and choose a squad captain. Let $t_{0}=0$ and for $n>0$, let t_{n} count the number of ways that she can do this. Find the closed form of the exponential generating function $\sum_{n} t_{n} x^{n} / n!$. Note: This means that the squad B team is ordered and that squad C must have at least one player.
Hint: The first few terms in this sequence are $0,1,8,51,312, \ldots$

Solution:

Let i, j, and k be the number of players resp. on squad A , squad B , and squad C . Then

$$
\begin{equation*}
t_{n}=\sum_{i+j+k=n} \frac{n!}{i!j!k!} 2^{i} j!k \tag{1}
\end{equation*}
$$

So by the Wilf rules, we must have

$$
\begin{aligned}
T(x)=\sum_{n} t_{n} \frac{x^{n}}{n!} & =\sum_{n} 2^{n} \frac{x^{n}}{n!} \sum_{n} n!\frac{x^{n}}{n!} \sum_{n} n \frac{x^{n}}{n!} \\
& =e^{2 x} \frac{1}{1-x} x e^{x}=\frac{x e^{3 x}}{1-x}
\end{aligned}
$$

Although it wasn't requested, we can see that

$$
t_{n}=n!\left[x^{n}\right] \frac{x e^{3 x}}{1-x}=n!\left[x^{n-1}\right] \frac{1}{1-x} e^{3 x}=n!\sum_{k=0}^{n-1} \frac{3^{k}}{k!}
$$

So, for example,

$$
t_{3}=3!\left(1+\frac{3}{1}+\frac{3^{2}}{2!}\right)=6(1+3+9 / 2)=51, \text { as expected }
$$

It is also worthwhile to list the 8 possibilities with two players, say 1 and 2 . For example, $1^{r}|0| 2$ indicates that player 1 is given a red jersey on squad A and player 2 would be the captain of squad C. Here are the other 7 lineups.

$$
\begin{aligned}
& 1^{b}|0| 2,2^{r}|0| 1,2^{b}|0| 1 \\
& 0|1| 2,0|2| 1 \\
& 0|0| 1^{c} 2,0|0| 12^{c}
\end{aligned}
$$

Hopefully, the notation is self-explanatory and it should be clear that these are the only cases.

Remark: (a) Notice that the right-hand side of (1) is zero whenever $k=0$. That is, for any configuration that assigns zero players to squad C , the summand is 0 , as expected.
(b) It is a worthwhile exercise to list the 51 possibilities for 3 players. This is something I plan to advocate for the entire semester - List all possible configurations (within reason) for any exercise that you question. Also, don't be afraid to use https://oeis.org/.
2. (a) (6 points) Use exercise $01 / 19-\# 2$ to show

$$
\sum_{n, k \geq 0}\left\{\begin{array}{l}
n \tag{2}\\
k
\end{array}\right\} t^{k} \frac{x^{n}}{n!}=e^{t\left(e^{x}-1\right)}
$$

Solution:

Following the suggestion, we have

$$
\begin{aligned}
\sum_{n \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \frac{x^{n}}{n!} & =\frac{1}{k!} \sum_{n \geq 0} k!\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \frac{x^{n}}{n!} \\
& =\frac{1}{k!} \sum_{n \geq 0} \sum_{j=0}^{k}\binom{k}{j} j^{n}(-1)^{j+k} \frac{x^{n}}{n!} \\
& =\frac{(-1)^{k}}{k!} \sum_{j}(-1)^{j}\binom{k}{j} \sum_{n \geq 0} \frac{(j x)^{n}}{n!} \\
& =\frac{(-1)^{k}}{k!} \sum_{j}(-1)^{j}\binom{k}{j} e^{x j} \\
& =\frac{(-1)^{k}}{k!} \sum_{j}\binom{k}{j}\left(-e^{x}\right)^{j} \\
& =\frac{(-1)^{k}}{k!}\left(1-e^{x}\right)^{k} \quad(\text { by the Binomial Theorem })
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{n, k \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} t^{k} \frac{x^{n}}{n!} & =\sum_{k \geq 0} t^{k} \sum_{n \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \frac{x^{n}}{n!} \\
& =\sum_{k \geq 0} \frac{t^{k}\left(e^{x}-1\right)^{k}}{k!}=e^{t\left(e^{x}-1\right)}
\end{aligned}
$$

as desired.
(b) (4 points) Use (2) to rederive the exponential generating function for the Bell numbers. That is, let $\left\{b_{n}\right\}$ be the Bell numbers. Show that

$$
\begin{equation*}
\sum_{n \geq 0} b_{n} \frac{x^{n}}{n!}=e^{e^{x}-1} \tag{3}
\end{equation*}
$$

Solution:

Recall that $b_{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\}$. It follows that

$$
\sum_{n \geq 0} b_{n} \frac{x^{n}}{n!}=\sum_{n \geq 0} \sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \frac{x^{n}}{n!}=\sum_{n \geq 0} \sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} 1^{k} \frac{x^{n}}{n!}=e^{1\left(e^{x}-1\right)}
$$

