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Figure 1: A directed edge

Let G be a simple graph with no loops and let |V (G)| = d < ∞. Let uv ∈ E(G) be an edge. We
will use the notation u → v to indicate the directed edge from u to v. See Figure 1. An
orientation ϑ of G is simply the collection of all edges in E = E(G) with each edge given an
(arbitrary) assigned direction. Notice that |ϑ| = |E|. An orientation will be called acyclic if it
contains no directed cycles.

Also, let ϑ be an acyclic orientation on G and let c be an n-coloring of G. We say that c is
compatible with ϑ if for every directed edge u → v in ϑ, we have c(v) ≥ c(u). We say that the
pair is strictly compatible if c(v) > c(u).

Theorem 1 (Stanley). Let G be a simple graph with no loops and let |V (G)| = d < ∞. Also,
let χG(x) be its chromatic polynomial. Then (−1)dχG(−n) equals the number of compatible pairs
(ϑ, c) where ϑ is an acyclic orientation and c is an n-coloring. In particular, (−1)dχ(−1) counts
the number of acyclic orientations of G.
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Figure 2: Graph K3

Before we prove this theorem, it is worthwhile to look at a relevant example.

Example 2. Recall that the chromatic polynomial of the complete graph K3 shown in Figure 2
is χ(x) = x(x− 1)(x− 2). Now according to the above theorem, there are

(a) (−1)3χ(−1) = 6 acyclic orientations of K3.

(b) (−1)3χ(−2) = 24 compatible pairs (ϑ, c) where ϑ is an acyclic orientation and
c : V (K3) → {5, 6}, i.e., c is a 2-coloring (using the colors 5 and 6). Note: The reasons for not
using 1 and 2 for colors will become clear below.
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Figure 3: An acyclic orientation ϑ0 of K3 using ρ = {23}

We will sketch 8 of these below. In order to track distinct orientation/coloring pairs, we adopt
the following conventions.

(i) The vertex names will be as indicated in Figure 2, but they will not be explicitly marked.

(ii) Each vertex will be encoded with integers indicating the number of arrows directed
towards (+) or away (-) from it. For example, v1 has two arrows directed away from it,
hence it’s arrow-encoding is −2. Note: This convention makes it easier to quickly
identify different orientations.

(iii) In each sketch, vertices will be either be colored using 5 and 6 or labeled by their
arrow-encoding but not both.

We leave it as an exercise to sketch all 6 acyclic orientations. Below we sketch 8 of the 24
compatible orientation/coloring pairs.
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Figure 4: Two acyclic orientations of K3, ϑ0 and ϑ1

Now let’s sketch all of the 2-colorings that are compatible to ϑ0 = {v1 → v2, v1 → v3, v3 → v2}. It
is easy to see that the two 1-colorings below are compatible with ϑ0. In fact, 1-colorings are
always compatible with acyclic orientations.
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The next two are also compatible. For example, in the sketch on the left below, we have

c(v2) > c(v1) and c(v2) > c(v3)

and

c(v3) ≥ c(v1)
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Notice that the coloring below is not compatible with ϑ0 since c(v3) < c(v1).

6

6

5

By similar arguments, it should be easy to see that the next 4 colorings are compatible with ϑ1.
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We invite the reader to identify the remaining 16 compatible pairs.

Proof (of Theorem 1): Throughout this proof, an orientation will always mean an acyclic
orientation. Let χG(n) = (−1)dχG(−n) and let e = uv ∈ E(G). We have the following
contraction/deletion identity for χG. For n ∈ P,

χG(−n) = (−1)dχG(n)

= (−1)d(χG\e(n)− χG/e(n))

= (−1)dχG\e(n) + (−1)d−1χG/e(n)

= χG\e(−n) + χG/e(−n)
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Here the last line follows since |V (G/e)| = d− 1. It now follows that

χG(n) = χG\e(n) + χG/e(n)

Why?

Now let λG(n) count the number of compatible pairs (ϑ, c), where ϑ is acyclic orientation and c is
an n-coloring. We claim that λG satisfies the same contraction/deletion identity as χG. If the
claim is true, then λG(n) = χG(n). To see this, we induct on the size of E = E(G). If |E| = 0,
then G is the empty graph and

χG(n) = (−1)dχG(−n) = (−1)d(−n)d = nd = λG(n)

Now suppose that the result holds for |E| = k − 1. Notice that |E(G \ e)| = |E(G/e)| = k − 1, so
that

χ(n) = χG\e(n) + χG/e(n)

(∗)
= λG\e(n) + λG/e(n)

= λG(n)

Here step (*) holds by induction.

It remains to show that

(1) λG(n) = λG\e(n) + λG/e(n)

Let c be an n-coloring of G \ e. Notice that this also produces an n-coloring of G since
|V (G \ e)| = |V (G)|. Also, let ϑ be an acyclic orientation of G \ e compatible with c. Now let ϑ1

be the orientation of G created by adding the directed segment u → v to ϑ and let ϑ2 be the
orientation of G created by adding the directed segment v → u to ϑ. We will show that for each
compatible pair (ϑ, c) of G \ e, exactly one of the pairs (ϑ1, c) or (ϑ2, c) is compatible for G, except
for λG/e(n) of these pairs, when both are compatible.

i. If c(u) > c(v) then ϑ2 is compatible with c while ϑ1 is not. Furthermore, ϑ2 is acyclic. For if
v → u → w1 → · · · → wk → v is a directed cycle, then c(v) < c(u) ≤ c(w1) ≤ · · · ≤ c(v) which
is impossible.

ii. If c(v) > c(u) then ϑ1 is compatible with c while ϑ2 is not. Now proceed as in case i.

iii. Finally, if c(u) = c(v), then both ϑ1 and ϑ2 are compatible and at least one of them is acyclic.
If not, then there exist directed cycles u → v → w1 → · · · → wk → u and
v → u → w′

1 → · · · → w′
j → v. It now follows that

�

v → w1 → · · · → wk → u → w′
1 → · · · → w′

j → v

is a directed cycle in ϑ, contrary to our original assumption.

4



Combinatorial Reciprocity Spring 2024

1 2

2 2

2
3

u v

Γ

1 2

2 2

2
3

u v

Λ

Figure 5: Two compatible pairs (Γ, c) and (Λ, c) for G \ e

Notice that we show that “at least” one of the orientations in case iii is acyclic. However, Figure 5
makes it clear that there are certain scenarios where adding the directed edge u → v to an
orientation of G \ e yields an acyclic orientation of G and adding the directed edge v → u to an
orientation of G \ e also produces an acyclic orientation of G. Notice that this occurs precisely
when the acyclic orientation on G \ e yields an acyclic orientation on G/e. Compare orientations Γ
and Λ in Figure 5.

Returning to the notation of item iii above, we suppose that (ϑ, c) is a compatible pair for G \ e
such that ϑ1 and ϑ2 are acyclic orientations of G compatible with c. We define a bijection
Φ(ϑ, c) = (ϑ′, c′) as follows. Let x be the vertex in G/e obtained by identifying u with v (see
Fig. 6). Since E(G \ e) = E(G/e), we define ϑ′ by w1 → w2 in ϑ if and only if w1 → w2 in ϑ′ and
we define c′(w) = c(w) for each w ∈ V (G/e) \ x and c′(x) = c(u) = c(v). It is clear that
Φ(ϑ, c) = (ϑ′, c′) is the desired bijection.
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Figure 6: Compatible pair (Λ, c) for G \ e and the corresponding image under Φ of the compatible
pair (Λ′, c′) for G/e

Now since the number of compatible pairs in G/e is λG/e(n), the identity in (1) is established.

The above proof follows closely the proof of Theorem 1.2 given in Stanley’s paper. Except is noted
in the introduction (and in class), our definitions of orientations, compatible pairs, etc. are as
described in section 1.1 of Beck and Sanyal’s monograph Combinatorial Reciprocity Theorems. In
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particular, we avoid the awkward method of describing an orientation using the exception set ρ,
preferring instead to simply list each of the directed edges. See ϑ0 in Example 2 above.
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