The Lagrange Inversion Formula (LIF)

Following Wilf we consider the following functional equation

$$
\begin{equation*}
z=x \phi(z) \tag{1}
\end{equation*}
$$

Can we solve for z as an explicit function of x ? Can we find a closed formula for the sequence of coefficients, $\left[x^{n}\right] z(x)$? Note: The functional equation (1) implies $z(0)=0$.

Theorem 1. The Lagrange Inversion Formula Suppose that $W(z)$ and $\phi(z)$ are formal power series in z with $\phi(0)=1$. Then there is a unique formal power series $z=z(x)=\sum_{n} z_{n} x^{n}$, satisfying (1). In addition, the value of $W(z(x))$ when expanded in a power series in x about $x=0$ satisfies

$$
\begin{equation*}
n\left[x^{n}\right] W(z(x))=\left[z^{n-1}\right]\left\{W^{\prime}(z) \phi^{n}(z)\right\} \tag{2}
\end{equation*}
$$

The simplest version of the theorem occurs when we take $W(z)=z$. In that case, (2) reduces to

$$
\begin{equation*}
n\left[x^{n}\right] z(x)=\left[z^{n-1}\right] \phi^{n}(z) \tag{3}
\end{equation*}
$$

At first glance, it may look as if we are trading one problem, coefficient extraction on $W(z(x))$, for another perhaps more difficult task, coefficient extraction on the more complicated expression $W^{\prime}(z) \phi^{n}(z)$. However, in practice this is not the case. In fact, we will see that LIF can still be quite useful even when an explicit solution (1) is known.

Our first example is a familiar one. In Math 481 we saw that the Catalan numbers $c_{n}:=|C([n])|$ counted the number of legal strings of n pairs of matching parentheses. For example, $c_{3}=5$ since

$$
\begin{equation*}
C([3])=\{()()(),(())(),()(()),((())),(()())\} \tag{4}
\end{equation*}
$$

are the only legal strings with 3 pairs of matching parentheses. If we define $c_{0}=1$ then the first 10 Catalan numbers are

$$
\begin{equation*}
1,1,2,5,14,42,132,429,1430,4862, \ldots \tag{5}
\end{equation*}
$$

Now let $C(x)=\sum_{n} c_{n} x^{n}$ be the ordinary power series generating function of the Catalan numbers. We showed that $C(x)$ satisfied the functional equation

$$
\begin{equation*}
C(x)=1+x C^{2}(x) \tag{6}
\end{equation*}
$$

This yielded explicit closed form

$$
\begin{equation*}
C(x)=\frac{1-\sqrt{1-4 x}}{2 x} \tag{7}
\end{equation*}
$$

It takes quite a bit more effort to conclude that

$$
\begin{equation*}
c_{n}=\left[x^{n}\right] C(x)=\frac{1}{n+1}\binom{2 n}{n} \tag{8}
\end{equation*}
$$

We now illustrate how to derive (8) using LIF.

Example 2. Let $C(x)$ be as given above. Now let $z=C(x)-1$ and $\phi(z)=(1+z)^{2}$. Then $\phi(0)=1$ and (6) becomes

$$
z=C(x)-1=x C^{2}(x)=x \phi(z)
$$

Now by (3), we have

$$
\begin{aligned}
{\left[x^{n}\right] z(x) } & =\frac{1}{n}\left[z^{n-1}\right](1+z)^{2 n} \\
& =\frac{1}{n}\left[z^{n-1}\right] \sum_{k}\binom{2 n}{k} z^{k} \\
& =\frac{1}{n}\binom{2 n}{n-1} \\
& =\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

and we have recovered an explicit formula for the Catalan numbers with a lot less work. Notice also that in this example, we have an explicit solution to $z=x \phi(z)$, namely

$$
z(x)=C(x)-1=\frac{1-\sqrt{1-4 x}}{2 x}-1
$$

The next example illustrates how to use LIF to reprove Binomial Inversion. Warning: This is used to illustrate another aspect of LIF only. It is certainly not the preferred proof in this case.

Example 3. Suppose that

$$
f_{n}=\sum_{k=0}^{n}\binom{n}{k} g_{k}
$$

and let $f(x)=\sum_{n} f_{n} x^{n}$ and $g(x)=\sum_{n} g_{n} x^{n}$. We leave it as an exercise to show that

$$
\begin{equation*}
f(x)=\frac{1}{1-x} g\left(\frac{x}{1-x}\right) \tag{9}
\end{equation*}
$$

Now let $y=x /(1-x)$. Then $x=y /(1+y)$ and it's easy to see that

$$
\begin{equation*}
g(y)=\frac{1}{1+y} f\left(\frac{y}{1+y}\right) \tag{10}
\end{equation*}
$$

It is now a simple matter to mimic the proof of Theorem 2 (Stirling Inversion) to quickly conclude that

$$
g_{n}=\sum_{k} f_{k}\binom{n}{k}(-1)^{n-k}
$$

Instead we focus on (9) and rewrite the substitution that preceded it as $x=y(1-x)$. In other words,

$$
\begin{equation*}
x(y)=y(1-x)=y \phi(x) \tag{11}
\end{equation*}
$$

where $\phi(x):=1-x$. Now (10) becomes

$$
\begin{aligned}
g(y) & =(1-x(y)) f(x(y)) \\
& =f(x(y))-x(y) f(x(y)) \\
& =\sum_{k} f_{k} x^{k}(y)-x(y) \sum_{k} f_{k} x^{k}(y) \\
& =\sum_{k} f_{k} x^{k}(y)-\sum_{k} f_{k} x^{k+1}(y)
\end{aligned}
$$

so that

$$
\begin{equation*}
g_{n}=\left[y^{n}\right] g(y)=\sum_{k} f_{k}\left[y^{n}\right] x^{k}(y)-\sum_{k} f_{k}\left[y^{n}\right] x^{k+1}(y) \tag{12}
\end{equation*}
$$

Evidently we need to compute $\left[y^{n}\right] x^{k}(y)$ and $\left[y^{n}\right] x^{k+1}(y)$. So now we use (2) with $W(z)=z^{k}$ and $W(z)=z^{k+1}$, respectively. Thus

$$
\begin{aligned}
{\left[y^{n}\right] x^{k}(y) } & =\frac{1}{n}\left[x^{n-1}\right] k x^{k-1}(1-x)^{n} \\
& =\frac{k}{n}\left[x^{k-n}\right] \sum_{j}\binom{n}{j}(-1)^{j} x^{j} \\
& =\frac{k}{n}\binom{n}{n-k}(-1)^{n-k}=\frac{k}{n}\binom{n}{k}(-1)^{n-k}
\end{aligned}
$$

We leave it as an exercise to show that

$$
\begin{equation*}
x^{k+1}(y)=\frac{k+1}{n}\binom{n}{k+1}(-1)^{n-k-1} \tag{13}
\end{equation*}
$$

Returning to (12), we have

$$
\begin{aligned}
g_{n}=\left[y^{n}\right] g(y) & =\sum_{k} f_{k}\left[y^{n}\right] x^{k+1}(y)-\sum_{k} f_{k}\left[y^{n}\right] x^{k+1}(y) \\
& =\sum_{k} f_{k} \frac{k}{n}\binom{n}{k}(-1)^{n-k}-\sum_{k} f_{k} \frac{k+1}{n}\binom{n}{k+1}(-1)^{n-k-1} \\
& =\sum_{k} f_{k}\left(\frac{k}{n}\binom{n}{k}+\frac{k+1}{n}\binom{n}{k+1}\right)(-1)^{n-k} \\
& =\sum_{k} f_{k}\binom{n}{k}(-1)^{n-k}
\end{aligned}
$$

as expected. Here the last line follows from Exercise 4 from 02/23.

If $z(x)$ is a formal power series about $x=0$, we follow the standard convention that $\left[x^{m}\right] z(x)=0$ whenever $m<0$.

Proof (of Theorem 1): We proceed by induction on $n \geq 0$. For the base case, both sides of (2) are clearly 0 whenever $n=0$. Now suppose that (2) is true for $0<m<n$. As we attempted to illustrate in Example 3, it is enough to show that the following holds for all k.

$$
\begin{equation*}
n\left[x^{n}\right] z^{k}(x)=k\left[z^{n-1}\right]\left\{z^{k-1} \phi^{n}(z)\right\} \tag{14}
\end{equation*}
$$

We consider a few special cases:
(i) $k=0$: The right-hand side of (14) is clearly 0 , and $n>0$ implies that $n\left[x^{n}\right] z^{0}(x)=n\left[x^{n}\right] 1=0$.
(ii) $k>n$: Then $n-k<0$ so that

$$
n\left[x^{n}\right] z^{k}(x)=n\left[x^{n}\right] x^{k} \phi^{k}(z(x))=n\left[x^{n-k}\right] \phi^{k}(z(x))=0
$$

as we remarked above. The right-hand side is 0 for the same reason.
(iii) $k=n$: We have

$$
\begin{aligned}
n\left[x^{n}\right] z^{n}(x) & \stackrel{(1)}{=} n\left[x^{n}\right] x^{n} \phi^{n}(z(x))=n\left[x^{0}\right] \phi^{n}(z(x))=n \phi^{n}(z(0)) \\
& =n \phi^{n}(0) \\
& =n\left[z^{0}\right] \phi^{n}(z)=n\left[z^{n-1}\right]\left\{z^{n-1} \phi^{n}(z)\right\}
\end{aligned}
$$

since $\phi(0)=1$. Now suppose that $0<k<n$. Then

$$
\begin{aligned}
n\left[x^{n}\right] z^{k}(x) & \stackrel{(1)}{=} n\left[x^{n-k}\right] \phi^{k}(z(x)) \\
& \stackrel{(*)}{=} \frac{n}{n-k}\left[z^{n-k-1}\right]\left(\phi^{k}(z)\right)^{\prime} \phi^{n-k}(z) \\
& =\frac{n}{n-k}\left[z^{n-k-1}\right] k \phi^{k-1}(z) \phi^{\prime}(z) \phi^{n-k}(z) \\
& =\frac{k}{n-k}\left[z^{n-k}\right] n z \phi^{n-1}(z) \phi^{\prime}(z) \\
& =\frac{k}{n-k}\left[z^{n-k}\right] z D_{z}\left(\phi^{n}(z)\right) \\
& \stackrel{(* *)}{=} \frac{k}{n-k}\left[z^{n-k}\right](n-k) \phi^{n}(z) \\
& =k\left[z^{n-1}\right] z^{k-1} \phi^{n}(z)
\end{aligned}
$$

as desired. Notice that we were able to use the induction hypothesis (14) at step $\left(^{*}\right)$ since $n-k<n$ and that we invoked Wilf Rule 2 at step $\left({ }^{* *}\right)$.

