
Lecture 5 - Inversion Theorems - Part 2 Spring 2024

The Lagrange Inversion Formula (LIF)

Following Wilf we consider the following functional equation

(1) z = xφ(z)

Can we solve for z as an explicit function of x? Can we find a closed formula for the sequence of
coefficients, [xn]z(x)? Note: The functional equation (1) implies z(0) = 0.

Theorem 1. The Lagrange Inversion Formula Suppose that W (z) and φ(z) are formal
power series in z with φ(0) = 1. Then there is a unique formal power series z = z(x) =

∑

n zn x
n,

satisfying (1). In addition, the value of W (z(x)) when expanded in a power series in x about
x = 0 satisfies

(2) n[xn]W (z(x)) = [zn−1]{W ′(z)φn(z)}

The simplest version of the theorem occurs when we take W (z) = z. In that case, (2) reduces to

(3) n[xn]z(x) = [zn−1]φn(z)

At first glance, it may look as if we are trading one problem, coefficient extraction on W (z(x)), for
another perhaps more difficult task, coefficient extraction on the more complicated expression
W ′(z)φn(z). However, in practice this is not the case. In fact, we will see that LIF can still be
quite useful even when an explicit solution (1) is known.

Our first example is a familiar one. In Math 481 we saw that the Catalan numbers cn := |C([n])|
counted the number of legal strings of n pairs of matching parentheses. For example, c3 = 5 since

(4) C([3]) = {()()(), (())(), ()(()), ((())), (()())}
are the only legal strings with 3 pairs of matching parentheses. If we define c0 = 1 then the first
10 Catalan numbers are

(5) 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . .

Now let C(x) =
∑

n cn x
n be the ordinary power series generating function of the Catalan

numbers. We showed that C(x) satisfied the functional equation

C(x) = 1 + xC2(x)(6)

This yielded explicit closed form

C(x) =
1−

√
1− 4x

2x
(7)

It takes quite a bit more effort to conclude that

cn = [xn]C(x) =
1

n+ 1

(

2n

n

)

(8)

We now illustrate how to derive (8) using LIF.
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Example 2. Let C(x) be as given above. Now let z = C(x)− 1 and φ(z) = (1 + z)2. Then
φ(0) = 1 and (6) becomes

z = C(x)− 1 = xC2(x) = xφ(z)

Now by (3), we have

[xn]z(x) =
1

n
[zn−1](1 + z)2n

=
1

n
[zn−1]

∑

k

(

2n

k

)

zk

=
1

n

(

2n

n− 1

)

=
1

n+ 1

(

2n

n

)

and we have recovered an explicit formula for the Catalan numbers with a lot less work. Notice
also that in this example, we have an explicit solution to z = xφ(z), namely

z(x) = C(x)− 1 =
1−

√
1− 4x

2x
− 1

The next example illustrates how to use LIF to reprove Binomial Inversion. Warning: This is
used to illustrate another aspect of LIF only. It is certainly not the preferred proof in this case.

Example 3. Suppose that

fn =
n

∑

k=0

(

n

k

)

gk

and let f(x) =
∑

n fn x
n and g(x) =

∑

n gn x
n. We leave it as an exercise to show that

(9) f(x) =
1

1− x
g

(

x

1− x

)

Now let y = x/(1− x). Then x = y/(1 + y) and it’s easy to see that

(10) g(y) =
1

1 + y
f

(

y

1 + y

)

It is now a simple matter to mimic the proof of Theorem 2 (Stirling Inversion) to quickly conclude
that

gn =
∑

k

fk

(

n

k

)

(−1)n−k
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Instead we focus on (9) and rewrite the substitution that preceded it as x = y(1− x). In other
words,

(11) x(y) = y(1− x) = yφ(x)

where φ(x) := 1− x. Now (10) becomes

g(y) = (1− x(y))f(x(y))

= f(x(y))− x(y)f(x(y))

=
∑

k

fk x
k(y)− x(y)

∑

k

fk x
k(y)

=
∑

k

fk x
k(y)−

∑

k

fk x
k+1(y)

so that

gn = [yn]g(y) =
∑

k

fk [y
n]xk(y)−

∑

k

fk [y
n]xk+1(y)(12)

Evidently we need to compute [yn]xk(y) and [yn]xk+1(y). So now we use (2) with W (z) = zk and
W (z) = zk+1, respectively. Thus

[yn]xk(y) =
1

n
[xn−1]kxk−1(1− x)n

=
k

n
[xk−n]

∑

j

(

n

j

)

(−1)jxj

=
k

n

(

n

n− k

)

(−1)n−k =
k

n

(

n

k

)

(−1)n−k

We leave it as an exercise to show that

xk+1(y) =
k + 1

n

(

n

k + 1

)

(−1)n−k−1(13)

Returning to (12), we have

gn = [yn]g(y) =
∑

k

fk [y
n]xk+1(y)−

∑

k

fk [y
n]xk+1(y)

=
∑

k

fk
k

n

(

n

k

)

(−1)n−k −
∑

k

fk
k + 1

n

(

n

k + 1

)

(−1)n−k−1

=
∑

k

fk

(

k

n

(

n

k

)

+
k + 1

n

(

n

k + 1

))

(−1)n−k

=
∑

k

fk

(

n

k

)

(−1)n−k

as expected. Here the last line follows from Exercise 4 from 02/23.
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If z(x) is a formal power series about x = 0, we follow the standard convention that [xm]z(x) = 0
whenever m < 0.

Proof (of Theorem 1): We proceed by induction on n ≥ 0. For the base case, both sides of (2)
are clearly 0 whenever n = 0. Now suppose that (2) is true for 0 < m < n. As we attempted to
illustrate in Example 3, it is enough to show that the following holds for all k.

(14) n[xn]zk(x) = k[zn−1]{zk−1φn(z)}

We consider a few special cases:

(i) k = 0: The right-hand side of (14) is clearly 0, and n > 0 implies that
n[xn]z0(x) = n[xn] 1 = 0.

(ii) k > n: Then n− k < 0 so that

n[xn]zk(x) = n[xn]xkφk(z(x)) = n[xn−k]φk(z(x)) = 0

as we remarked above. The right-hand side is 0 for the same reason.

(iii) k = n: We have

n[xn]zn(x)
(1)
= n[xn]xnφn(z(x)) = n[x0]φn(z(x)) = nφn(z(0))

= nφn(0)

= n[z0]φn(z) = n[zn−1]{zn−1φn(z)}

since φ(0) = 1. Now suppose that 0 < k < n. Then

n[xn]zk(x)
(1)
= n[xn−k]φk(z(x))

(∗)
=

n

n− k
[zn−k−1]

(

φk(z)
)

′

φn−k(z)

=
n

n− k
[zn−k−1]kφk−1(z)φ′(z)φn−k(z)

=
k

n− k
[zn−k]nzφn−1(z)φ′(z)

=
k

n− k
[zn−k]zDz (φ

n(z))

(∗∗)
=

k

n− k
[zn−k](n− k)φn(z)

= k[zn−1]zk−1φn(z)

as desired. Notice that we were able to use the induction hypothesis (14) at step (*) since
n− k < n and that we invoked Wilf Rule 2 at step (**). �

4


