Lecture 5 - Inversion Theorems - Part 2 Spring 2024

The Lagrange Inversion Formula (LIF)

Following Wilf we consider the following functional equation

(1) 2 = 26(2)

Can we solve for z as an explicit function of 7 Can we find a closed formula for the sequence of
coefficients, [z"]z(z)? Note: The functional equation (1) implies z(0) = 0.

Theorem 1. The Lagrange Inversion Formula Suppose that W (z) and ¢(z) are formal
power series in z with ¢(0) = 1. Then there is a unique formal power series z = z(z) =) 2z, 2",
satisfying (1). In addition, the value of W (z(z)) when expanded in a power series in z about

x = 0 satisfies

(2) nfa" W (z(z)) = ["T{W'(2)¢" (2)}

The simplest version of the theorem occurs when we take W (z) = z. In that case, (2) reduces to

(3) nfz"]z(x) = [z""']¢" ()

At first glance, it may look as if we are trading one problem, coefficient extraction on W (z(z)), for
another perhaps more difficult task, coefficient extraction on the more complicated expression
W'(2)¢"(z). However, in practice this is not the case. In fact, we will see that LIF can still be
quite useful even when an explicit solution (1) is known.

Our first example is a familiar one. In Math 481 we saw that the Catalan numbers ¢, := |C([n])|
counted the number of legal strings of n pairs of matching parentheses. For example, c3 = 5 since

(4) ¢(3) = {000, ()0, 000, ((0)), (O0)}

are the only legal strings with 3 pairs of matching parentheses. If we define ¢y = 1 then the first
10 Catalan numbers are

(5) 1,1,2,5,14,42, 132,429, 1430, 4862, . . .

Now let C'(z) =), ¢, 2" be the ordinary power series generating function of the Catalan
numbers. We showed that C(x) satisfied the functional equation

(6) C(z) =1+ 20%(z)
This yielded explicit closed form

1—+vV1—-4x

7) Clw) = —L

It takes quite a bit more effort to conclude that

) = 10 = 5 ()

We now illustrate how to derive (8) using LIF.
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Example 2. Let C(x) be as given above. Now let z = C(x) — 1 and ¢(z) = (1 + 2)?. Then
¢»(0) =1 and (6) becomes
z=C(z) —1=2C%*x) = 2¢(2)

Now by (3), we have
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and we have recovered an explicit formula for the Catalan numbers with a lot less work. Notice
also that in this example, we have an explicit solution to z = z¢(z), namely

1—-—+vV1—-4x
2z

2(z) =C(x) — 1= 1

The next example illustrates how to use LIF to reprove Binomial Inversion. Warning: This is
used to illustrate another aspect of LIF only. It is certainly not the preferred proof in this case.

Example 3. Suppose that

fo = i (Z) 9

k=0

and let f(z) =), foa™ and g(x) =), g, 2". We leave it as an exercise to show that

) ro =159 (15)

Now let y = 2/(1 — x). Then z = y/(1 + y) and it’s easy to see that

(10) 9(y) = 1iyf(1iy)

It is now a simple matter to mimic the proof of Theorem 2 (Stirling Inversion) to quickly conclude
that

gn = Zk: Ji (Z) (="
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Instead we focus on (9) and rewrite the substitution that preceded it as z = y(1 — x). In other
words,

(11) z(y) = y(1 — 2) = yo(z)
where ¢(x) := 1 — 2. Now (10) becomes
9(y) = (1 —z(y) f(z(y))
= f(z(y)) — 2(y) f(z(y))

=Y fiat(y) = > fd ()
so that
(12) g =W"9w) =Y fely")a* () =D f e ()

Evidently we need to compute [y"]2*(y) and [y"]2*T1(y). So now we use (2) with W(z) = 2* and
W (z) = 2**1, respectively. Thus

(et @

We leave it as an exercise to show that

(13 o) = ()

Returning to (12), we have

B

S0 ()

as expected. Here the last line follows from Exercise 4 from 02/23.
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If z(z) is a formal power series about « = 0, we follow the standard convention that [z™]z(z) =0
whenever m < 0.

Proof (of Theorem 1): We proceed by induction on n > 0. For the base case, both sides of (2)
are clearly 0 whenever n = 0. Now suppose that (2) is true for 0 < m < n. As we attempted to
illustrate in Example 3, it is enough to show that the following holds for all &.

(14) n[z"]2"(x) = k[z" 7 {z" 1" (2)}
We consider a few special cases:

(i) k= 0: The right-hand side of (14) is clearly 0, and n > 0 implies that
n[z")2%(z) = n[z"]1 = 0.

(ii) £ > n: Then n — k < 0 so that
n[z"]2"(z) = n[z")a*¢" (2(2)) = n[z""*|¢" (2(x)) = 0
as we remarked above. The right-hand side is 0 for the same reason.

(iii) & =n: We have

nla"]e" () & nfaan " (a(2)) = nfa)6" (=(2)) = ng" (2(0))
= 16" (0)
= n[:¢"(2) = nl" {6 ()

since ¢(0) = 1. Now suppose that 0 < k < n. Then

nlz"]2* (@) L nfe" " (2(x))

(x» n n—k—1 k I in—k
= m[z ] (¢°(2)) ¢""(2)

_ ﬁ[znfkfl]k¢k71(2)¢/(z)¢"7k(2)
l{? n—k n—1 /
= " Mnzg" ()¢ ()
k
pyl
(=) K

m[zn_k] (n—k)o"(2)

= k" (2)

2D, (¢"(2))

as desired. Notice that we were able to use the induction hypothesis (14) at step (*) since
n — k < n and that we invoked Wilf Rule 2 at step (**). O



