
Lecture 3 - Combinatorial Structures - Part 3 Spring 2024

Iterative versus Recursive Constructions

Let us refer to constructions that use Theorem 3 (of the previous lecture) as iterative. We will
investigate recursive constructions below.

Example 1. A few iterative constructions.

a. The natural numbers: I = SEQ(Z) = SEQ({•}) with ogf I(x) =
1

1− x
.

b. Binary words: W = SEQ(Z + Z) = SEQ({a, b}) with ogf W (x) =
1

1− 2x
.

c. Interval coverings: F = SEQ(Z + Z × Z) = SEQ({•, }) with ogf F (x) =
1

1− x− x2
.

d. Compositions: C = SEQ(I) with ogf C(x) =
1

1− I(x)
=

1− x

1− 2x

e. Integer partitions: P = MSET(I) with ogf P (x) = exp
∑

n≥1

I(xn)

n

Recall that we introduced compositions and integer partitions a few weeks ago. We restate the
definitions here for convenience. Let n and k be integers. Then a composition of n into k is a
sequence (x1, x2, . . . , xk) of integers such that

n = x1 + x2 + · · · + xk, xj ≥ 1

and a partition of n is a sequence (x1, x2, . . . , xk) of integers such that

n = x1 + x2 + · · · + xk, x1 ≥ x2 ≥ · · · ≥ xk ≥ 1

In the both cases, the xj’s are called summands. We often refer to the summands for partitions as
a weakly decreasing sequence.

We can visualize each of these using the usual unary representation of the natural numbers

I = SEQk≥1(Z) = {•, • •, • • •, . . .}

Then compositions form a unary “ragged landscape” and partitions can be represented by the
unary staircase (called a Ferrers diagram) as shown in Figure 1.
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Figure 1: Graphical representation of the composition 2+6+3+4 = 15 on the left and the partition
6 + 4 + 3 + 2 = 15 on the right.

Now if Cn represents the counting sequence for compositions, then

Cn = [xn]C(x) = [xn]
1− x

1− 2x

= 2n − 2n−1 = 2n−1

Integer partitions have fascinated mathematicians for centuries. This is no doubt due to the fact
that there is no simple formula for the counting sequence Pn of P = MSET(I). Now by
Theorem 3, we have

P (x) = exp
∑

n≥1

1

n
I(xn) = exp

∑

n≥1

xn/n

1− xn
(1)

=
∏

n≥1

1

(1− xn)In
=

∏

n≥1

1

1− xn
(2)

Now the product representation yields

P (x) = (1 + x+ x2 + · · · )(1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · ) · · ·
= 1 + x+ 2x2 + 3x3 + 5x4 + 7x5 + · · ·

Even though no explicit formula exists for the counting sequence Pn, we have the following famous
1917 result due to Hardy and Ramanujan.

Theorem 2. (Hardy/Ramanujan) Let Pn = [xn]
∏

k≥1(1− xk)−1. Then

Pn ∼ 1

4n
√
3
eπ
√

2n/3

The symbol an ∼ bn means that an/bn → 1 as n → ∞.

Theorem 3 immediately yields the following results for some restricted classes.

Proposition 3. Let T ⊂ I be a subset of the positive integers. Then the ordinary generating
functions for the classes CT = SEQ(SEQT (Z)) and PT = MSET(SEQT (Z)) are

CT (x) =
1

1− T (x)
and P T =

∏

n∈T

1

1− xn

where T (x) =
∑

n∈T xn is the ordinary generating function for the class T .
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For example, let T = {1, 2}. Then CT is the set of all compositions with summands restricted to
the set {1, 2}. We have already seen the counting sequence for this class are the Fibonacci
numbers since

CT (x) =
1

1− T (x)
=

1

1− (x+ x2)

More generally we have the following example.

Example 4.

a. Let T = {1, 2, 3, . . . , r}. Then the generating function for all compositions whose summands
lie in T is

(3) CT (x) =
1

1−
∑r

k=1 x
k
=

1

1− x
1− xr

1− x

=
1− x

1− 2x+ xr+1

b. Let T = {5, 10, 25}. Then there are 29 ways to make change for a dollar using an unlimited
supply of nickels, dimes and quarters since

[x100]P T (x) = [x100]
∏

n∈T

1

1− xn
= [x100]

(

1

1− x5

1

1− x10

1

1− x25

)

= 29
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Recursive Constructions

b

b b b

b

b b

b

b

b

τ1 =

b

v3
b

b b

b b

b

b

b

bb

= τ2

b

Figure 2: Two distinct plane trees of size 10

Recall that a tree is an acyclic, connected graph. A tree is called rooted if one of its vertices is
identified (the root). A plane tree (or ordered tree) is a rooted tree with a specified order assigned
to the children of each vertex. Figure 2 shows two distinct plane trees τ1 and τ2 of order 10. The
root is shown in red and there is an implied order for the four vertices that are adjacent to the
root (its children). This implied order is left to right. And the order pattern continues with each
descendant.

Notice that we can represent plane trees linearly. We illustrate with τ1. We build up a linear
model recursively. Let • represent the root and let • • • •• represent the root and each of its
children. Continuing, we have

•
• • • ••

• • • •• • • •

τ1 = • • • •• • • •• •

Vertex v3 is shown in blue throughout. You should find the linear representation of τ2 and
convince yourself that τ1 6= τ2. (See Exercise 4a).

Now let G be the class of all plane trees and let Z = {•}. Then the above example suggests we
can define G by the recursive equation

G = Z × SEQ(G)(4)

It follows that

G(x) =
x

1−G(x)

This yields an equation that can solved by radicals.

G(x)− (G(x))2 = x(5)
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It is now routine to discover that

G(x) =
1−

√
1− 4x

2
= x

1−
√
1− 4x

2x
(6)

= xC(x)(7)

= x(1 + x+ 2x2 + 5x3 + 14x4 + 42x5 + 132x6 + 429x7 + 1430x8 + · · · )(8)

Here C(x) = 1−
√
1−4x
2x

is the ordinary generating function of the Catalan numbers.

Notice that [x3]G(x) = 2 which indicates that there are exactly two plane trees of order 3. See
Figure 3.
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b

b

b

b

Figure 3: The only plane trees of order 3

On the other hand, there is only one tree of order 3.
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Exercises

1. In Figure 1 there appears to be a clear relationship between compositions and partitions of a
certain form. Identify this relationship.

2. Let P (x) be the ordinary generating function defined in (2). Use logarithmic differentiation

to show that xP ′(x)
P (x)

=
∑

n≥1
nxn

1−xn
. Use this to show that

(9) nPn =
n

∑

k=1

σ(k)Pn−k

where σ(n) is the sum of the divisors of n. For example, σ(6) = 1 + 2 + 3 + 6 = 12.

Solution:
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Let S(x) = ∑

n σ(n) x
n. Then, by the Wilf rules, the right-hand side of (9) is the

counting sequence of the product of the generating functions S(x) and P (x). Now
from (2) we have

P (x) =
∏

n≥1

1

1− xn
(10)

Logarithmic differentiation yields

P ′(x)

P (x)
=

∑

n≥1

nxn−1

1− xn
(11)

Multiplying by x and rearranging we obtain

xP ′(x) = P (x)
∑

n≥1

nxn

1− xn
(12)

So by the Wilf rules, we have

∑

n

nPn x
n = xP ′(x) = P (x)

∑

n≥1

nxn

1− xn
(13)

So by (13), it suffices to show that S(x) = ∑

n≥1
nxn

1−xn
.

Notice that [xn]S(x) = σ(n) =
∑

m|nm. Now suppose that m | n, say n = km for
some k ≥ 1. Then

[xn]
mxm

1− xm
= [xn]

mxm

1− xm

= [xm(k−1)]m(1 + xm + x2m + · · · )
= m

It is easy to see that if m ∤ n, then [xn] mxm

1−xm
= 0. The result now follows.

3. Show that

[xn]
∑

k≥0

(

x(1− xr)

1− x

)k

=
∑

j,k

(−1)k
(

j

k

)(

n− rk − 1

j − 1

)

Hint: See (3).

4. Plane trees.
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(a) Find a linear representation of the plane tree τ2 shown in Figure 2.

(b) Sketch the plane tree whose linear representation is given by • • •• •• • •• • • •• • .

(c) The nested boxes are not really necessary for the linear representation of a plane tree.
Find another way.
Hint: Your answer should help explain the result in (8).

5. Verify the calculations that yield (6). The quadratic equation should have two solutions.
What happened to the conjugate solution? Do you recognize C(x) in (8)?

6. From the previous exercise, show that C(x) =
∑

n
1

n+1

(

2n
n

)

xn.

7. Consider the recursively defined class A = Z2 × SEQ(A) and answer the questions below.

(a) Find the closed form of ordinary generating function A(x). Express the counting
numbers An in terms of Cn from the previous exercise.

Solution:

Notice that the recursion implies that A(x) must satisfy the functional equation

A(x) =
x2

1− A(x)

The above equation has two solutions

A(x) =
1±

√
1− 4x2

2

However we can rule out one of these since A(0) = 0 (why?). It follows that

A(x) =
1−

√
1− 4x2

2

= x21−
√
1− 4x2

2x2

= x2C(x2)

where C(x) is the ordinary generating function for the Catalan numbers as
described in (8) and the previous exercise.
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(b) What can you say about A = Zk × SEQ(A) for a nonnegative integer k?
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