
MTH 482 Lecture 02 - Compositions and Integer Partitions - Part 1

Compositions

In Math 481 we defined and discussed multisets and various equivalent ways that certain problems
were equivalent to counting multisets. One of these was the following:

Definition 1. Let n, k be integers. Then
((

k

n

))

is the total number of nonnegative solutions to
the equation

n = x1 + x2 + · · · + xk (1)

The right-hand side of (1) is called a weak composition of n into k parts. If we insist that the
xj > 0, then (1) is called a composition of n into k parts.

For example, 4 + 0 + 12 + 10 is a weak composition of 24 into 4 parts and 4 + 8 + 9 + 3 is a
composition of 24 into 4 parts. It’s important to remember that order matters, so that
4 + 8 + 9 + 3 and 8 + 4 + 9 + 3 are different compositions of 24 into 4 parts.

We restate two of the results from Math 481 using the language of compositions.

Theorem 2. Let n, k be nonnegative integers. Then the number of weak compositions of n into
k parts is

((

k

n

))

=

(

n+ k − 1

k

)

(2)

and the number of compositions of n into k parts is
((

k

k − n

))

=

(

n− 1

n− k

)

=

(

n− 1

k − 1

)

(3)

The next result is new.

Theorem 3. Let n be a positive integer. Then the number of compositions of n is 2n−1.

Proof: Let n be a positive integer. Then n can be written as a composition into 1 part, or 2
parts,..., and finally, into n parts. So by the Addition rule and Theorem 3, the number of
compositions of n is

n
∑

k=1

(

n− 1

k − 1

)

=
∑

k

(

n− 1

k

)

= 2n−1
�

The set of compositions of n into k parts is often denoted by the symbol Q([n], k) and the set of
all compositions of n is denoted by Q([n]). The size of these two sets is then denoted q(n, k) and
q(n), respectively. With this notation, the last two results can be restated as

q(n, k) = |Q([n], k)| =

(

n− 1

k − 1

)

q(n) = |Q([n])| = 2n−1
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Integer Partitions

In Math 481 we also introduced set partitions and the Bell numbers. It turns out that we can
develop a similar concept with integers.

Definition 4. Let n be a nonnegative integer. An integer partition of n is a multiset λ whose
elements (called parts) sum to n. We introduce the notation λ ⊢ n to mean that λ is an integer
partition of n. Since the elements of a multiset set have no inherent order, we will always list the
elements of λ as a weakly decreasing sequence. In keeping with earlier conventions, the set of all
integer partitions of n will be denoted P ([n]) and its size is given by p(n). That is, p(n) = |P ([n])|.

For example, (3, 1, 1) ⊢ 5 and the set of all integer partitions of 5 is

P ([5]) = {(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)}

It follows that p(5) = 7.

There is a useful visualization for integer partitions. A Young diagram (or Ferrers shape) of an
integer partition λ = (λ1, λ2, . . . , λk) ⊢ n is a left-justified array of squares whose jth row has λj

squares. Figure 1 shows the Young diagram for λ = (5, 3, 2, 2) ⊢ 12. It also includes its transpose
or conjugate, λt.

λ = λt =

Figure 1: Young diagram and its transpose for the integer partition λ = (5, 3, 2, 2)

Notice that if λ = (λ1, λ2, . . . , λk) ⊢ n and λt = (λt
1, λ

t
2, . . . , λ

t
m) is its transpose, then λt is an

integer partition of n whose jth part counts the number of parts of λ that are greater than or
equal to j.
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n

k
0 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1
2 0 1 2 2 2 2 2 2 2 2
3 0 1 2 3 3 3 3 3 3 3
4 0 1 3 4 5 5 5 5 5 5
5 0 1 3 5 6 7 7 7 7 7
6 0 1 4 7 9 10 11 11 11 11
7 0 1 4 8 11 13 14 15 15 15
8 0 1 5 10 15 18 20 21 22 22
9 0 1 5 12 18 23 26 28 29 30

Table 1: Integer partitions of n into at most k parts, p≤k(n).

Definition 5. Let n ≥ k > 0 and define Pk([n]) to be the set of integer partitions of n into
exactly k parts and P≤k([n]) to be the set of integer partitions of n into at most k parts. Now let
pk(n) = |Pk([n])| and p≤k(n) = |P≤k([n])|. As usual, let p≤k(n) = 0 if either n < 0 or k < 0 and let
p≤0(0) = 1.

Example 6.

P ([6]) = {(6), (5, 1), (4, 2), (4, 12), (32), (3, 2, 1), (3, 13), (23), (22, 12), (2, 14), (16)}

P2([6]) = {(5, 1), (4, 2), (32)}

P≤3([6]) = {(6), (5, 1), (4, 2), (4, 12), (32), (3, 2, 1), (23)}

It is pretty easy to see that p2(6) = 3, and p≤3(6) = 7.

Table 1 lists a few values of p≤k(n). Notice the row entries eventually stabilize.

We state a few facts about p≤k(n) and pk(n) in the following proposition.

Proposition 7.

pk(n) = p≤k(n)− p≤k−1(n) (4)

and for n > 0,

p≤k(n) = p≤k−1(n) + p≤k(n− k) (5)

Proof: The proof of identity (4) is routine. For (5), the left-hand side counts the number of
integer partitions of n into at most k parts. The first term on the right-hand side counts the
number of partitions of n into at most k − 1 parts. Now let λ = (λ1, λ2, . . . , λk) ⊢ n and define π

by the rule π(λ) = (λ1 − 1, λ2 − 1, . . . , λk − 1) where we agree to collapse any zero-entries.
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For example, if λ = (4, 3, 1) ∈ P3(8), then π(λ) = (3, 2, 0) = (3, 2) ∈ P≤3(5).

Then π : Pk(n) −→ P≤k(n− k) is a bijection and the result follows. �
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