
MTH 481 Lecture 16 - Sieve Methods Fall 2023

The Principle of Inclusion/Exclusion

We begin with an example.

Example 1. While doing his laundry last weekend, Tom discovered that many of
his shirts were stained. Nine were splashed with vinegar, 12 had coffee stains, and
11 had pizza sauce on them (Tom is a messy eater). Eight shirts had both coffee
and pizza stains, 4 had vinegar and pizza stains, and 4 had coffee and vinegar
stains. If 2 of his shirts had all three stains and 4 had none at all, how many
shirts were in Tom’s laundry basket?
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Figure 1: Tom’s Dirty Laundry

A careful inspection of the diagram will show that we did not double count. Now
let Q0 equal the number of shirts in the basket that have no stains and let N
equal the total number of shirts in the basket. Then

4 = Q0 = N − (|V |+ |C|+ |S|) + (|V C|+ |CS|+ |SV |)− |V SC|

= N − (9 + 12 + 11) + (4 + 8 + 4)− 2 = N − 18 (1)

So N = 22. (Note: Here we used the abbreviation AB = A∩B for sets A and B.)

The above example illustrates a very important technique in the theory of
combinatorics. We have

Theorem 2. The Principle of Inclusion and Exclusion (PIE)

1



MTH 481 Lecture 16 - Sieve Methods Fall 2023

Suppose that we have a collection S of N objects where each object may satisfy
one or more properties labeled p1, p2, . . . , pr. Now let Q(pi) denote the number of
objects from S that have property pi, Q(pipj) denote the number of objects that
have properties pi and pj, and so on. Finally, let Q0 denote the number of objects
that have none of these properties. Then

Q0 = N −
∑

i

Q(pi) +
∑

i<j

Q(pipj)−
∑

i<j<k

Q(pipjpk) + · · ·

+ (−1)m
∑

j1<···<jm

Q(pj1 . . . pjm) + · · ·+ (−1)rQ(p1p2 . . . pr) (2)

Proof: Let x ∈ S and suppose that x satisfies exactly m > 0 properties. Then x
contributes once to N ,

(

m

1

)

times to
∑

iQ(pi),
(

m

2

)

times to
∑

i<j Q(pipj) and so
on. In other words, x contributes

(

m

0

)

−

(

m

1

)

+

(

m

2

)

+ · · ·+ (−1)m
(

m

m

)

= 0

times to the right-hand side.

On the other hand, if x satisfies zero properties, then it is counted exactly once
by N . �

Later we will give a more general proof that includes the above result as a special
case.
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Recall the derangement problem from lecture 9. It turns out that we can also
study this problem using PIE. Once again, we let !n = Dn equal the number of
derangements (permutations with no fixed points) on [n]. Now let S = Sn be our
collection of objects. Then N = n! = |S|. Now let pj denote the property that j
remains fixed by a permutation from S. Then Q(pj) counts the number of
permutations that fix j, Q(pjpk) counts the number of permutations that fix j

and k, and so on. The idea behind the Principle is to remove these unwanted
permutations. It follows by (2) that

Dn = n!−
∑

i

(n− 1)! +
∑

i<j

(n− 2)!− · · ·+ (−1)m
∑

i1<···<im

(n−m)! + · · ·+ (−1)n

=

(

n

0

)

n!−

(

n

1

)

(n− 1)! +

(

n

2

)

(n− 2)!− · · ·+ (−1)m
(

n

m

)

(n−m)! + · · ·+

(

n

n

)

(−1)n

=
n

∑

m=0

(

n

m

)

(−1)m

= n!
n

∑

m=0

(−1)m

m!

In other words,

Dn

n!
=

n
∑

m=0

(−1)m

m!

as we saw in lecture 9.

Example 3. Over the course of an m day school year, each of the n students in
Ms. Baxter’s class is chosen as leader for the day. Let L(m,n) count the number
of ways this can done so that every student gets to be class leader at least once.
Show that

L(m,n) =
n

∑

k=0

(

n

k

)

(n− k)m(−1)k (3)

Now let S be the set of all possible choices of class leaders over the semester.
Notice that N = nm = |S| since S will include semesters where one or more
students is never chosen as class leader. (Note: Many authors refer to this as
over-counting.) Now number the students from 1 to n and let pj be the property
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that the jth student is never selected as class leader. Notice that
Q(pj) = (n− 1)m since we now have 1 less student to choose from. Similarly,
Q(pjpk) = (n− 2)m and so on. Then Q0 is the counts number of semesters where
every student was chosen to lead at least once. So by PIE we have

L(m,n) = Q0 = N −
∑

j

Q(pj) +
∑

j<k

Q(pjpk) + · · ·

+ (−1)n−1
∑

j1<···<jn−1

Q(pj1 · · · pjn−1
)

= nm −

(

n

1

)

(n− 1)m +

(

n

2

)

(n− 2)m + · · ·

+ (−1)r
(

n

r

)

(n− r)m + · · ·+ (−1)n−1

(

n

n− 1

)

(1)m

=
n−1
∑

r=0

(

n

r

)

(n− r)m(−1)r =
n

∑

r=0

(

n

r

)

(n− r)m(−1)r
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Recall that the Stirling numbers
{

n

k

}

counted the number of set partitions of [n]
into k blocks. The next example yields a “practical” formula for computing these
numbers.

Example 4. For n ≥ m ≥ 0, show that

m!

{

n

m

}

=
m
∑

k=0

(

m

k

)

kn(−1)m−k (4)

Suppose that we have voters v1, v2, . . . , vn and candidates C1, C2, . . . , Cm.

Question. In how many ways can votes be cast so that each candidate receives
at least one vote? Call each possible voting scenario an election result. Here we
are actually concerned with who voted for each candidate, not just the candidate
totals.

Answer 1. Notice that we can use ordered set partitions into exactly m blocks
to identify who voted for each candidate, provided each candidate receives at
least one vote. For example, if n = 5 and m = 3, then the ordered set partition
4/135/2 would indicate that v4 voted for candidate C1, voters v1, v3, and v5 voted
for candidate C2 and finally, v2 voted for C3. Also notice that 135/4/2 represents
a different election result. In other words, these are ordered set partitions.

So there are
{

n

m

}

ways to partition the set of voters into m nonempty blocks (so
that each candidate receives some votes) and m! ways to order these blocks. It
follows by the product rule that there are m!

{

n
m

}

possible election results.

Answer 2. Here we let S be the set of all possible voting results. Since we allow
for some candidates to receive zero votes, |S| = mn. Now in a manner similar to
the previous example, let pj be the property that the jth candidate receives zero
votes. Then Q(pj) = (m− 1)n, Q(pjpk) = (m− 2)n and so on. Now let Q0 be the
number of election results with none of these properties. Then Q0 counts the
number of possible election results where each candidate receives at least one vote
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and by PIE we have

Q0 = N −
∑

j

Q(pj) +
∑

j<k

Q(pjpk) + · · ·

+ (−1)m−1
∑

j1<···<jn−1

Q(pj1 · · · pjm−1
) + (−1)mQ(p1p2 · · · pm)

= mn −

(

m

1

)

(m− 1)n +

(

m

2

)

(m− 2)n + · · ·+

(

m

m− 1

)

(1)n(−1)m−1 + 0

=
m
∑

k=0

(

m

k

)

(m− k)n(−1)k

=
m
∑

k=0

(

m

m− k

)

(m− k)n(−1)k

=
m
∑

k=0

(

m

k

)

kn(−1)m−k

and (4) is established.
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Figure 2: The Sieve Method

The Sieve Method

Let Γ be a set of objects and P be a set of properties that one or more of the
objects possess. Let ek denote the number of objects that have exactly k

properties. How might we go about investigating this quantity?

Often it is easier to find out how many objects possess at least k properties. So
let S ⊆ P and let N(⊇ S) count the number of objects that have at least the
properties in S. Now for a fixed k ≥ 0 let

Nk =
∑

|S|=k

N(⊇ S) (5)

Now let π ∈ Γ and let P (π) denote the subset of all of the properties that π
possesses.

For example, in Figure 2 consider all of the subsets S of the properties
P = {P1, P2, P3, P4} with |S| = 2. Now P (π3) = {P2, P3, P4} so that π3 would
contribute 3 times to N2. Likewise, π5 contributes 3 times to N2. On the other
hand, π1 makes no contribution to Nk for k > 1 since P (π1) = {P2}.

7



MTH 481 Lecture 16 - Sieve Methods Fall 2023

Now

Nk =
∑

|S|=k

N(⊇ S) =
∑

|S|=k

∑

π∈Γ
S⊆P (π)

1

=
∑

π∈Γ

∑

|S|=k

S⊆P (π)

1 =
∑

π∈Γ

(

|P (π)|

k

)

Now let j ≥ k and suppose that |P (π)| = j. How much does π contribute to Nk?
It should be

(

j
k

)

. Thus

Nk =
∑

j≥k

(

j

k

)

ej

Now let N(x) and E(x) be the generating functions for Nk and ej, respectively.
Then

N(x) =
∑

k

Nkx
k =

∑

k

∑

j≥k

(

j

k

)

ejx
k

=
∑

j

ej

{

∑

k

(

j

k

)

xk

}

=
∑

j

ej(1 + x)j = E(x+ 1)

Since we are really interested in the ej’s, we usually write

E(x) = N(x− 1) (6)

Notice that the number of objects that have none of the given properties is

e0 = E(0) = N(−1)

Example 5. Let’s apply this analysis to Example 1. So N = 22 since there are
22 shirts. How many of the shirts have a coffee stain? How many have vinegar
stains? How about pizza sauce stains. The answers are 12, 9, and 11, respectively.
So N1 = 11 + 12 + 9 = 32. Similarly, N2 = 16 and N3 = 2. It follows that

N(x) = 22 + 32x+ 16x2 + 2x3

8



MTH 481 Lecture 16 - Sieve Methods Fall 2023

So by (6),

E(x) = N(x− 1)

= 22 + 32(x− 1) + 16(x− 1)2 + 2(x− 1)3

= 4 + 6x+ 10x2 + 2x3

It is instructive to compare the following expression to (1).

E(0) = 22 + 32(−1)1 + 16(−1)2 + 2(−1)3 = 4

Notice how quickly we were able to construct N(x) and, ultimately, E(x) from
the given information. Now we can just read the results directly from the
coefficients of E(x). Remember, the coefficients of E(x) give us exact
information. So there are 4 shirts with exactly zero stains, 6 shirts that have
exactly one stain and 10 shirts that have exactly two stains.

Now someone might point out that we’re cheating here. In Example 1 we were
asked to find N and we were given e0 = 4. No problem.

N(x) = N + 32x+ 16x2 + 2x3

So by (6),

E(x) = N(x− 1)

= N + 32(x− 1) + 16(x− 1)2 + 2(x− 1)3

Now

4 = E(0) = N(−1)

= N − 32 + 16− 2

so that N = 22 as we saw in Example 1.

We are now in a position to give another proof of Theorem 2.

Proof: Following the notation used in Theorem 2. Now for 1 ≤ m ≤ r, we let
pj1, pj2, . . . , pjm be a set of m properties. What can we say about
Q(pj1, pj2, . . . , pjm)? It must count the number of objects in S that have at least
those m properties. In other words,

Nm =
∑

j1<···<jm

Q(pj1 . . . pjm)
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It follows that

N(x) =
∑

m

Nmx
m

In particular,

e0 = N(−1) =
∑

m

Nm(−1)m

=
∑

m

∑

j1<···<jm

Q(pj1 . . . pjm)(−1)m

= N +
r

∑

m=1

(−1)m
∑

j1<···<jm

Q(pj1 . . . pjm)

= N + (−1)1
∑

i

Q(pi) + (−1)2
∑

i<j

Q(pipj) + · · ·

+ (−1)m
∑

j1<···<jm

Q(pj1 . . . pjm) + · · ·+ (−1)rQ(p1p2 . . . pr)

which is (2). �
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Example 6. How many permutations from S4 fix exactly r elements?

There are 24 = 4! permutations. The 6 permutations that fix 1 are shown below.

(1)(2)(34), (1)(23)(4), (1)(234)

(1)(243), (1)(24)(3), e

Notice that some of these permutations fix other elements, but we don’t care. So
by symmetry, N1 = 24. Now the following permutations fix 1 and 2.

e, (1)(2)(34)

So N2 =
(

4
2

)

· 2 = 12. In a similar fashion, N3 =
(

4
3

)

· 1 = 4. Finally, N4 = 1 since
the identity permutation is the only element in S4 to fix [4]. It follows that

N(x) = 24 + 24x+ 12x2 + 4x3 + x4

so that

E(x) = N(x− 1)

= 9 + 8x+ 6x2 + x4

Notice that there are 9 permutations that fix zero objects (i.e., there are 9
derangements). There are 8 permutations that fix exactly one element and 6
permutations that fix exactly two elements.

Why are there no permutations that fix exactly three elements?

There is a Mathematica notebook that automatically generates N(x), E(x), and
other useful information about Sn for user specified values of n. It is available
here: https://tinyurl.com/ybqhvclb.
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Exercises

1. Let L(m,n) =
∑n

k=0

(

n

k

)

(n− k)m(−1)k as defined in Example 3. Show that
L(m,n) = 0 whenever 0 < m < n.

12


