MTH 481 9 - Set Partitions

5.2 Set Partitions

Definition 1. Let S = [n]. We say the a collection of nonempty, pairwise
disjoint subsets (called blocks) of S is a set partition if their union is S.

Example. Let S = [4], then {1}{2,3,4} is a partition of S into two subsets.
Can you list the other 67

{1,2} {3,4}
{1,3,4} {2}
{1,2,3} {4}

{1,4} {2,3}
{1,2,4} {3}

{1,3} {2,4}

Definition 2. Now let {[Z]} denote the collection of all partitions of [n] into k
subsets and let S(n, k) = {7} be the number of elements in {[Z]}. That is,

=)= |

These are called Stirling numbers of the second kind or Stirling set numbers. As
we did with the binomial and multinomial coefficients, let’s see if we can prove a
recursion formula for these numbers.

Proposition 3. Let n,k € Z and let {Z} = 0 whenever k >n orn <0 or k <O.
Finally, for n > 0 set {g} = 0. Then

{Z}:{Zj}ﬂ%{n;l} ((n,k)#(O,O);{8}= ) (1)

Proof: The exceptional cases are trivial, so we suppose that 1 < k < n.

Question - In how many ways can we partition [n] into k subsets?

LHS This is {Z} by definition.
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n 4 0 1 2 3 4 ) 6 7 8 9 by,
0 1 1
1 0 1 1
2 0 1 1 2
3 0 1 3 1 5
4 0o 1 7 6 1 15
) 0 1 15 25 10 1 52
6 0 1 31 90 65 15 1 203
7 0 1 63 301 350 140 21 1 877
8 0 1 127 966 1701 1050 266 28 1 4140
9 0 1 255 3025 7770 6951 2646 462 36 1 | 21147

Table 1: Stirling numbers of the second kind

RHS The set {[Z]} contains partitions of two types. Some partitions contain the
singleton subset {n}. The remaining partitions do not. When n is alone, then
the remaining n — 1 elements can be placed into k£ — 1 subsets in {Zj} ways.
If n is not alone, we first partition [n — 1] into k subsets and then insert n
into any of these subsets. So there are kz{”;l} ways to do this. Putting these
together, there are {Z:} } + k{";l} partitions of [n] containing k subsets. [

Table 1 lists the first 9 rows of the Stirling triangle. Do you notice any patterns in
the table?

The sums of the entries in each row appear in the last column. They are the
so-called Bell numbers and, by definition, give the number of ways to partition
[n] into nonempty blocks of any size. They will be discussed in more detail below.
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Example 4. For a history class of n students, in how many ways can the
students create m nonempty study groups? Note: Except for their members, the
study groups are indistinguishable and not all students must participate.

We claim that the there are ), (Z) { 7’; } ways to do this. To see this notice that
there (Z) to select a group of k£ students that will participate and { T’fl } ways to
partition those k£ students into m nonempty study groups. So by the product
rule, there are (Z) {7];} ways to create the study groups with k students. Now if

j # k then the study groups created with j students and the study groups with &
students are disjoint. So by the sum rule, there are ), (Z) { T’; } ways to create m
study groups in a class of n students.

For example, in a class of 4 students there are

£06- 0 06 0

ways to create 2 nonempty study groups. One easily check that there are
140 ways to create 4 nonempty study groups in a class of 6 students. After
looking in Table 1, we make the following conjecture.

= ()4} - {00 g

Proof: As we noted above, the left-hand side counts the number of m nonempty
study groups from a class of n students. For the right-hand, we identify those
who do not wish to participate as the students in the same block as n + 1. ]

Remark: Notice that we used a version of the “distinguished” element argument.
In this case, we used it to identify which “study group” didn’t exist. Notice that
if n + 1 appears alone in a block, then all students joined a study group.
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Example 5. For n > 0 prove that

it

Proof: Q. How many ways can n students be assigned to x classrooms if rooms
are allowed to remain empty?

Note: We remark that if there are 9 students and 3 classrooms, say A, B, C, we
could use the ordered partition 236/17/4589 to indicate that students 2,3,6 were
assigned to room A, students 1,7 to room B, etc. and the ordered partition
17/236/4589 would be a different assignment.

LHS. Clearly there are x" ways to make such assignments.

RHS. Condition on the number of nonempty classrooms k. If there is only one
nonempty room, then all of the students must be placed into the same room.
Since there are x rooms, there are x = {Tf}:cl ways to do this. For the general
case, suppose that there are £ nonempty rooms. Then there are {Z} to divide the
students into k& subgroups and there are z(x — 1) --- (z — k + 1) = 2% ways to
arrange the groups into the rooms. So by the product rule, there are {Z}xk to
distribute the students into £ nonempty classrooms. Summing over all & produces
the result.

Remark: Explain why (3) must hold for all real (complex?) numbers.
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Set partitions can also be described using the canonical form.

Definition 6. Let o € {[Z]}, say 0 = By/Bsy/ - -- /By written in standard block
form. Now let w(o) = wywsy - - w, € [k]" (an n-string on the alphabet [k]) defined
by w; = j if and only if ¢« € B;. Given a partition o written in block form, we
shall refer to w(o) as its canonical form.

For example, say o = 127/3/48/56 € {[i}}. Then w(o) = 11234413 since, for
example, 7 € By iff w; = 1.

Question - Does the canonical form of a set partition give us any additional info
about the size of Stirling set numbers?

Example 7. For m,n € N, show that

S (ot =10

Proof: We may assume that 0 < m < n. Now, the right-hand side counts that
number of ways to partition [n + 1] into m + 1 blocks.

For the left-hand side, we condition on the block, call it B, containing n + 1. If

n + 1 is alone, then there are (Z) {:1} ways to partition the remaining n elements
across m blocks. If | B| = 2 then there are (}/) = (") ways to choose the element
that pairs with n + 1 and {”ﬂ;l} ways to partition the remaining elements. So by
the product rule, there are (n’il) {";Ll} to partition [n + 1] whenever n + 1 is in a
doubleton block. In general, there are (Z) ways to choose the n — k elements that
are paired with n 4+ 1 and { Tlfl } ways to partition the remaining k elements into m
blocks and we apply the product rule to obtain (Z) {T]Z} to create m + 1 blocks
when |B| =n — k + 1. Since each of these cases are disjoint, we can now sum on k
and the result follows. ]
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Example 8. For n,m € N show that

ik{nzk}:{erﬂ?erl} "

Hint: Use Proposition 3 and telescoping sums.

Proof: 'We give two proofs. Fix n and notice that by Proposition 3, the left-hand
side can be rewritten as a telescoping sum. Let a; = {”leﬂ}. Then

SUP B (A S P

= G — ag—1
It follows that
S =Y w-an
k=1 k=1

1
:{m—l—n—l- }_0
m

Now let’s give a combinatorial proof. We'll let m = 7 and n = 3 to make the
argument easier to follow. The right-hand side of (4) counts the number of ways
to partition [m + n + 1] = [11] into m = 7 blocks.

as desired.

For the left-hand side, we condition by identifying one or more singleton blocks
and counting down. So what does m{"'"} = 7{10} actually count? There are
{10} ways to partition [10] into 7 blocks and we can place 11 into any of the
blocks. So, by the product rule there are 7{ } ways to do this. Observe that 11
is never in a singleton block.

Next, partition [9] into 6 blocks and let 11 occupy the last block. Now insert 10
into any of the first 6 blocks. By the product rule there are 6{2} ways to do this.
Notice that 11 is singleton, so this collection of partitions is disjoint from the
previous collection.

Continuing, we partition [8] into 5 blocks, let 10 and 11 occupy the last two
blocks, and insert 9 into any of the first 5 blocks. By the product rule there are
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5{?} ways to do this. Notice that 10 and 11 are singleton, so this collection of
partitions is disjoint from the previous collections.

We continue in this fashion until we partition [4] into 1 block, let 6-11 occupy the
last 6 blocks, and insert 5 into the first block. Clearly, there are 1{111} ways to do
this. Once again, these partitions are disjoint from each of the collections above.

Now the result follows by the sum rule. [

Remark: Notice that there can never be more than 6 singleton blocks. Now one
might argue that this method omits some partitions. It’s pretty clear that if it
does miss any, then singletons are involved. As an example, can you identify if
and where the partition 1/2/34/58/679/10/11 was counted? What about
1/2/34/568/710/9/11 or 1/2/346/58/7/9/10117
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Proposition 9. The Bell numbers b, satisfy the following recursion.

bnt1 = Z (Z) b, n>0,by=1 (5)

k

Proof: 'We consider the number of set partitions of [n + 1]. By definition, this is
b,+1. Now for each partition, we condition on the subsets that contain the
number 1. If 1 is a singleton, there are b, ways to partition the remaining n
elements. Now suppose that 1 is in a doubleton. So there are (T) to choose the
element that is paired with 1, and there are b, to partition the remaining n — 1
elements. So by the product rule there (?) b,_1 ways to partition [n + 1] in the
case. It follows that for the general case, there (})b,_x ways to partition [n + 1]
whenever there are k elements in the same subset as 1. Since these cases are
disjoint, we can sum over all values of k£ to obtain

n

b1 = i (Z) bn—k = Z (Z) b, (6)

And the last equality follows by the symmetry of the binomial coefficients,

(Z):(nﬁk) -
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The next example yields a “practical” formula for Stirling set numbers.

Example 10. For n > m > 0, show that

$(2csr-crnf)

Proof:

Remark: We will revisit (7) in chapter 7 when we study sieve methods.



