The Wilf Rules

Ordinary Generating Functions
Suppose that p is a polynomial, D is the usual derivative operator and
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Then we have the following rules for ordinary generating functions.
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Exponential Generating Functions

Now let p and D be as defined above and
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Then we have the following rules for exponential generating functions.

Rule 1’: D*G(x) PN {gn+k}n>0
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Some Useful Identities from Math 481

)= (") —
(Z) = (-D)F (k - Z - 1) (Factor out negative)

Let B and C be classes. Then
Sum: A=B+C = A(z) = B(z) + C(z)
Product: A=BxC = A(z) = B(x)C(x)

Sequence: A = SEQ(B) = Alr) = 1- B(z)
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Cycle: A= CYC(B) = A@)=-)_ @ log(1 — B(z*))
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where ¢ is the Euler totient function. For the last 4 constructions, we assume that B(0) = 0.
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Here |L| = n.



