The Wilf Rules

Ordinary Generating Functions

Suppose that p is a polynomial, D is the usual derivative operator and

$$G(x) \xrightarrow{\operatorname{ogf}} \{g_n\}_{n \ge 0} \text{ and } H(x) \xrightarrow{\operatorname{ogf}} \{h_n\}_{n \ge 0}$$

Then we have the following rules for ordinary generating functions.

$$\begin{aligned} \mathbf{Rule 1:} & \quad \frac{G(x) - g_0 - g_1 x - \dots - g_{k-1} x^{k-1}}{x^k} & \stackrel{\text{ogf}}{\longleftrightarrow} \quad \{g_{n+k}\}_{n \ge 0} \\ \\ \mathbf{Rule 2:} & \quad p(xD)G(x) & \stackrel{\text{ogf}}{\longleftrightarrow} \quad \{p(n)g_n\}_{n \ge 0} \\ \\ \mathbf{Rule 3:} & \quad G(x)H(x) & \stackrel{\text{ogf}}{\longleftrightarrow} \quad \left\{\sum_{k=0}^n g_k h_{n-k}\right\}_{n \ge 0} \\ \\ \mathbf{Rule 4:} & \quad G(x)^k \quad \stackrel{\text{ogf}}{\longleftrightarrow} \quad \left\{\sum_{n_1+n_2+\dots+n_k=n}^n g_{n_1}g_{n_2}\cdots g_{n_k}\right\}_{n \ge 0} \\ \\ \\ \mathbf{Rule 5:} & \quad \frac{G(x)}{1-x} \quad \stackrel{\text{ogf}}{\longleftrightarrow} \quad \left\{\sum_{k=0}^n g_k\right\}_{n \ge 0} \end{aligned}$$

Exponential Generating Functions

Now let p and D be as defined above and

$$G(x) \xrightarrow{\text{egf}} \{g_n\}_{n \ge 0} \text{ and } H(x) \xrightarrow{\text{egf}} \{h_n\}_{n \ge 0}$$

Then we have the following rules for exponential generating functions.

Rule 1':
$$D^k G(x) \xleftarrow{\text{egf}} \{g_{n+k}\}_{n \ge 0}$$

Rule 2': $p(xD)G(x) \xleftarrow{\text{egf}} \{p(n)g_n\}_{n \ge 0}$
Rule 3': $G(x)H(x) \xleftarrow{\text{egf}} \left\{\sum_{k=0}^n \binom{n}{k} g_k h_{n-k}\right\}_{n \ge 0}$

Some Useful Identities from Math 481

$$\binom{n}{k} = \binom{n+k-1}{k}$$
(Multichoose)
$$\binom{\alpha}{k} = (-1)^k \binom{k-\alpha-1}{k}$$
(Factor out negative)
$$\sum_{n} \binom{n}{k} x^n = \frac{x^k}{(1-x)^{k+1}}$$

Admissible Classes

Let ${\mathcal B}$ and ${\mathcal C}$ be classes. Then

$\mathcal{A} = \mathcal{B} + \mathcal{C} \implies$	A(x) = B(x) +	C(x)
$\mathcal{A} = \mathcal{B} imes \mathcal{C} \implies$	A(x) = B(x)C(x)
$\mathcal{A} = SEQ(\mathcal{B})$ =	$\Rightarrow \qquad A(x) = \frac{1}{1 - H}$	$\overline{\beta(x)}$
$\mathcal{A} = \operatorname{PSET}(\mathcal{B})$	$\implies \qquad A(x) = \prod_{n \ge 1}$	$(1+x^n)^{B_n} = \exp\sum_{k\ge 1} \frac{(-1)^{k-1}}{k} B(x^k)$
$\mathcal{A} = \mathrm{MSET}(\mathcal{B})$	$\implies \qquad A(x) = \prod_{n \ge 1}$	$(1-x^n)^{-B_n} = \exp\sum_{k\ge 1} \frac{1}{k} B(x^k)$
$\mathcal{A} = \operatorname{CYC}(\mathcal{B})$ =	$\Rightarrow \qquad A(x) = -\sum_{k \ge k}$	$\sum_{k=1}^{k} \frac{\phi(k)}{k} \log(1 - B(x^k))$
	$\mathcal{A} = \mathcal{B} \times \mathcal{C} \implies$ $\mathcal{A} = \operatorname{SEQ}(\mathcal{B}) =$ $\mathcal{A} = \operatorname{PSET}(\mathcal{B}) =$ $\mathcal{A} = \operatorname{MSET}(\mathcal{B})$	$\mathcal{A} = \mathcal{B} + \mathcal{C} \implies A(x) = B(x) + \mathcal{A} = \mathcal{B} \times \mathcal{C} \implies A(x) = B(x)C(x)$ $\mathcal{A} = \mathcal{B} \times \mathcal{C} \implies A(x) = B(x)C(x)$ $\mathcal{A} = \mathcal{B} \times \mathcal{C} \implies A(x) = \frac{1}{1 - E}$ $\mathcal{A} = \mathcal{B} \times \mathcal{C} \implies A(x) = \prod_{n \ge 1} \mathcal{A}$ $\mathcal{A} = \mathcal{B} \times \mathcal{C} \implies A(x) = \prod_{n \ge 1} \mathcal{A}$ $\mathcal{A} = \mathcal{B} \times \mathcal{C} \implies A(x) = \prod_{n \ge 1} \mathcal{A}$

where ϕ is the Euler totient function. For the last 4 constructions, we assume that B(0) = 0.

Labeled Structures

S(L)	s_n	egf
2^L	2^n	e^{2x}
${L \\ k}$	${n \\ k}$	$\frac{1}{k!}(e^x-1)^k$
$\mathfrak{S}(L)$	n!	$\frac{1}{1-x}$
$\begin{bmatrix} L \\ k \end{bmatrix}$	$\begin{bmatrix}n\\k\end{bmatrix}$	$\frac{1}{k!} \left(\ln \frac{1}{1-x} \right)^k$

Here |L| = n.