The Wilf Rules

Ordinary Generating Functions

Suppose that p is a polynomial, D is the usual derivative operator and

$$
G(x) \stackrel{\text { ogf }}{\longleftrightarrow}\left\{g_{n}\right\}_{n \geq 0} \text { and } H(x) \stackrel{\text { ogf }}{\longleftrightarrow}\left\{h_{n}\right\}_{n \geq 0}
$$

Then we have the following rules for ordinary generating functions.

Rule 1: $\frac{G(x)-g_{0}-g_{1} x-\cdots-g_{k-1} x^{k-1}}{x^{k}} \stackrel{\text { ogf }}{\longleftrightarrow}\left\{g_{n+k}\right\}_{n \geq 0}$
Rule 2: $\quad p(x D) G(x) \stackrel{\text { ogf }}{\longleftrightarrow}\left\{p(n) g_{n}\right\}_{n \geq 0}$
Rule 3: $G(x) H(x) \stackrel{\text { ogf }}{\longleftrightarrow}\left\{\sum_{k=0}^{n} g_{k} h_{n-k}\right\}_{n \geq 0}$
Rule 4: $G(x)^{k} \quad \stackrel{\text { ogf }}{\longleftrightarrow}\left\{\sum_{n_{1}+n_{2}+\cdots+n_{k}=n} g_{n_{1}} g_{n_{2}} \cdots g_{n_{k}}\right\}_{n \geq 0}$
Rule 5: $\quad \frac{G(x)}{1-x} \stackrel{\text { ogf }}{\longleftrightarrow}\left\{\sum_{k=0}^{n} g_{k}\right\}_{n \geq 0}$

Exponential Generating Functions

Now let p and D be as defined above and

$$
G(x) \stackrel{\text { egf }}{\longleftrightarrow}\left\{g_{n}\right\}_{n \geq 0} \quad \text { and } H(x) \stackrel{\text { egf }}{\longleftrightarrow}\left\{h_{n}\right\}_{n \geq 0}
$$

Then we have the following rules for exponential generating functions.

Rule 1': $\quad D^{k} G(x) \stackrel{\text { egf }}{\longleftrightarrow}\left\{g_{n+k}\right\}_{n \geq 0}$
Rule 2': $\quad p(x D) G(x) \stackrel{\text { egf }}{\longleftrightarrow}\left\{p(n) g_{n}\right\}_{n \geq 0}$
Rule 3' ${ }^{\prime}: \quad G(x) H(x) \stackrel{\text { egf }}{\longleftrightarrow}\left\{\sum_{k=0}^{n}\binom{n}{k} g_{k} h_{n-k}\right\}_{n \geq 0}$

$$
\begin{aligned}
& \left(\binom{n}{k}\right)=\binom{n+k-1}{k} \\
& \binom{\alpha}{k}=(-1)^{k}\binom{k-\alpha-1}{k} \quad \text { (Factor out negative) } \\
& \sum_{n}\binom{n}{k} x^{n}=\frac{x^{k}}{(1-x)^{k+1}}
\end{aligned}
$$

Admissible Classes

Let \mathcal{B} and \mathcal{C} be classes. Then

$$
\begin{aligned}
& \text { Sum: } \mathcal{A}=\mathcal{B}+\mathcal{C} \quad \Longrightarrow \quad A(x)=B(x)+C(x) \\
& \text { Product: } \quad \mathcal{A}=\mathcal{B} \times \mathcal{C} \quad \Longrightarrow \quad A(x)=B(x) C(x) \\
& \text { Sequence: } \mathcal{A}=\operatorname{SEQ}(\mathcal{B}) \quad \Longrightarrow \quad A(x)=\frac{1}{1-B(x)} \\
& \text { Powerset: } \mathcal{A}=\operatorname{PSET}(\mathcal{B}) \quad \Longrightarrow \quad A(x)=\prod_{n \geq 1}\left(1+x^{n}\right)^{B_{n}}=\exp \sum_{k \geq 1} \frac{(-1)^{k-1}}{k} B\left(x^{k}\right) \\
& \text { Multiset: } \mathcal{A}=\operatorname{MSET}(\mathcal{B}) \quad \Longrightarrow \quad A(x)=\prod_{n \geq 1}\left(1-x^{n}\right)^{-B_{n}}=\exp \sum_{k \geq 1} \frac{1}{k} B\left(x^{k}\right) \\
& \text { Cycle: } \mathcal{A}=\operatorname{CYC}(\mathcal{B}) \quad \Longrightarrow \quad A(x)=-\sum_{k \geq 1} \frac{\phi(k)}{k} \log \left(1-B\left(x^{k}\right)\right)
\end{aligned}
$$

where ϕ is the Euler totient function. For the last 4 constructions, we assume that $B(0)=0$.

Labeled Structures

$S(L)$	s_{n}	egf
2^{L}	2^{n}	$e^{2 x}$
$\left\{\begin{array}{l}L \\ k\end{array}\right\}$	$\left\{\begin{array}{l}n \\ k\end{array}\right\}$	$\frac{1}{k!}\left(e^{x}-1\right)^{k}$
$\mathfrak{S}(L)$	$n!$	$\frac{1}{1-x}$
$\left[\begin{array}{l}L \\ k\end{array}\right]$	$\left[\begin{array}{l}n \\ k\end{array}\right]$	$\frac{1}{k!}\left(\ln \frac{1}{1-x}\right)^{k}$

Here $|L|=n$.

