Throughout this exam, the instruction "Find the generating function" always means FIND THE CLOSED FORM OF THE GENERATING FUNCTION.

1. Let $\mathcal{B}=\{\bullet \bullet \bullet, \bullet \bullet\}$. So \mathcal{B} has 1 object of size one and 2 objects of size three. The first few terms in the counting sequence for the class $\mathcal{A}=\operatorname{SEQ}(\mathcal{B})$ are $1,1,1,3,5,7,13,23, \ldots$

Answer the questions below. Note: To be clear, $\bullet \notin \mathcal{A}$.
(a) (6 points) Notice that $(\bullet \bullet \bullet \bullet, \bullet) \in \mathcal{A}$. Now list the other 6 elements of size five in \mathcal{A}.

Solution:

The 6 other elements are

(b) (7 points) Find the generating function of \mathcal{A}.

Solution:

$$
A(x)=\frac{1}{1-x-2 x^{3}}
$$

(c) (7 points) Find the generating function of $\mathcal{C}=\operatorname{SEQ}(\bullet \bullet \mathcal{A})$.

Solution:

$$
C(x)=\frac{1}{1-x^{3} A(x)}=\frac{1}{1-\frac{x^{3}}{1-x-2 x^{3}}}=\frac{1-x-2 x^{3}}{1-x-3 x^{3}}
$$

2. (14 points) Let d_{n} count the number of derangements in \mathfrak{S}_{n}. These numbers satisfy the following recursion

$$
\begin{equation*}
d_{n+1}=(n+1) d_{n}+(-1)^{n+1}, \quad n \geq 0, d_{0}=1 \tag{1}
\end{equation*}
$$

Note: The first few derangement numbers are $1,0,1,2,9,44,265,1854,14833$.
(a) Give a combinatorial proof of the recursion in (1).
(b) Use (1) and the Wilf rules to (re-)derive the following result.

$$
\begin{equation*}
\sum_{n} d_{n} \frac{x^{n}}{n!}=\frac{e^{-x}}{1-x} \tag{2}
\end{equation*}
$$

Solution:

Let $g(x)=\sum_{n} d_{n} \frac{x^{n}}{n!}$. Then (1) together with the Wilf rules implies

$$
g^{\prime}(x)=x g^{\prime}(x)+g(x)-e^{-x}
$$

Rearranging produces

$$
g^{\prime}(x)(1-x)-g(x)=-e^{-x}
$$

or

$$
D((1-x) g(x))=-e^{-x}
$$

Integrating both sides yields

$$
\begin{aligned}
(1-x) g(x) & =e^{-x}+C \\
& =e^{-x}+0
\end{aligned}
$$

which is (2).
3. (20 points) Let $\mathcal{S}(\cdot)=(\dot{i})$. Answer the questions below.
(a) Find the exponential generating function $F_{\mathcal{S}}(x)=\sum_{n \geq 0}\binom{n}{1} x^{n} / n$!.

Solution:

This one is straightforward.

$$
F_{\mathcal{S}}(x)=\sum_{n \geq 0} n \frac{x^{n}}{n!}=x D\left(e^{x}\right)=x e^{x}
$$

(b) List the distinct elements in $(\mathcal{S} \times \mathcal{S})([3])$. Note: These elements should be written as ordered pairs.

Solution:

$$
(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)
$$

(c) Find the exponential generating function $F_{\mathcal{S} \times \mathcal{S}}(x)$. Note: $F_{\mathcal{S} \times \mathcal{S}}(x) \neq F_{\left(\dot{z}_{2}\right)}(x)$.

Solution:

By the Product Rule,

$$
F_{\mathcal{S} \times \mathcal{S}}(x)=x^{2} e^{2 x}
$$

(d) Use the exponential formula to find the exponential generating function for the partition structure $\Pi(\mathcal{S})$. In other words, find $F_{\Pi(\mathcal{S})}(x)$. Note: $\mathcal{S}=\overline{\mathcal{S}}$

Solution:

By the exponential formula

$$
F_{\Pi(\mathcal{S})}(x)=e^{F_{\overline{\mathcal{S}}}(x)}=e^{x e^{x}}
$$

The first few terms of the counting sequence are

$$
1,1,3,10,41,196,1057,6322,41393,293608,2237921,18210094
$$

4. (16 points) Let n and k be integers. Let $\left[\begin{array}{c}{[n]} \\ k\end{array}\right]$ be the collection of all partitions of $[n]$ into k linearly ordered blocks. As usual, let $\left\lfloor\begin{array}{l}0 \\ 0\end{array}\right\rfloor=1$ and for $n>0$, let $\left[\begin{array}{c}n \\ k\end{array}\right\rfloor=\left\lfloor\left.\left\lfloor\begin{array}{c}{[n]} \\ k\end{array}\right\rfloor \right\rvert\,\right.$. For example, $\left[\begin{array}{c}{[3]} \\ 2\end{array}\right\rfloor=\{12 / 3,21 / 3,13 / 2,31 / 2,23 / 1,32 / 1\}$. It follows that $\left\lfloor\begin{array}{l}3 \\ 2\end{array}\right\rfloor=6$. Notice that only the ordering within each block matters, not the order of the blocks themselves, so $32 / 1=1 / 32$, etc. It turns out that these numbers satisfy the following recursion.

$$
\left\lfloor\begin{array}{c}
n+1 \tag{3}\\
k
\end{array}\right\rfloor=(n+k)\left\lfloor\begin{array}{l}
n \\
k
\end{array}\right\rfloor+\left\lfloor\begin{array}{c}
n \\
k-1
\end{array}\right\rfloor
$$

together with additional boundary conditions $\left\lfloor\begin{array}{c}n \\ k\end{array}\right\rfloor=0$ whenever $n<0$ or $k \leq 0$ or $k>n$.
(a) Find a combinatorial proof of the recursion (3).

Solution:

The left-hand side counts the number of partitions of $[n+1]$ into k linearly ordered blocks. Throughout the remainder of this proof, a partition means a partition with linearly ordered blocks.
Now for any partition in $\left[\begin{array}{c}{[n+1]} \\ k\end{array}\right], n+1$ is either alone in a block or it is not. In the first case, we can append $n+1$ to any of the partitions in $\left\lfloor{ }_{k-1}^{[n]}\right\rfloor$ to create a partition in $\left[\begin{array}{c}{[n+1]} \\ k\end{array}\right\rfloor$. Clearly there are $\left\lfloor\begin{array}{c}n \\ k-1\end{array}\right\rfloor$ ways to do this.
Otherwise, we can choose $\lambda \in\left[\begin{array}{c}{[n]} \\ k\end{array}\right]$, say $\lambda=B_{1} / B_{2} / \cdots / B_{k}$. Now we can place $n+1$ at the beginning of any block, e.g., $\lambda^{j}=B_{1} / B_{2} / \cdots /(n+1) B_{j} / \cdots / B_{k}$, so there are $k\left\lfloor\begin{array}{l}n \\ k\end{array}\right\rfloor$ ways to do this. Or we can place $n+1$ after any element (within any block), so there must be $n\left\lfloor\begin{array}{c}n \\ k\end{array}\right\rfloor$ ways to do this.
Since the 3 cases are distinct, we have shown that

$$
\left\lfloor\begin{array}{c}
n+1 \\
k
\end{array}\right\rfloor=\left\lfloor\begin{array}{c}
n \\
k-1
\end{array}\right\rfloor+k\left\lfloor\begin{array}{c}
n \\
k
\end{array}\right\rfloor+n\left\lfloor\begin{array}{l}
n \\
k
\end{array}\right\rfloor
$$

which is (3).
(b) Let $L_{k}(x)=\sum_{n \geq 0}\left\lfloor\begin{array}{l}n \\ k\end{array}\right\rfloor \frac{x^{n}}{n!}$. It turns out that

$$
\begin{equation*}
L_{k}(x)=\frac{1}{k!}\left(\frac{x}{1-x}\right)^{k} \tag{4}
\end{equation*}
$$

Verify (4) when $k=1$.

Solution:

$$
\begin{aligned}
L_{1}^{\prime}(x) & =\sum_{n}\left[\begin{array}{c}
n+1 \\
1
\end{array}\right\rfloor \frac{x^{n}}{n!} \\
& =\sum_{n}\left[\begin{array}{l}
n \\
0
\end{array}\right\rfloor \frac{x^{n}}{n!}+1 \sum_{n}\left\lfloor\begin{array}{c}
n \\
1
\end{array}\right\rfloor \frac{x^{n}}{n!}+\sum_{n} n\left\lfloor\begin{array}{c}
n \\
1
\end{array}\right\rfloor \frac{x^{n}}{n!} \\
& =L_{0}(x)+L_{1}(x)+x L_{1}^{\prime}(x)
\end{aligned}
$$

Rearranging yields

$$
L_{1}^{\prime}(x)(1-x)-L_{1}(x)=L_{0}(x)=1
$$

or

$$
D\left((1-x) L_{1}(x)\right)=1
$$

Integrating both sides produces

$$
\begin{aligned}
(1-x) L_{1}(x) & =x+C \\
& =x+0
\end{aligned}
$$

It follows that

$$
L_{1}(x)=\frac{x}{1-x}
$$

as expected.
5. (10 points) Let $\mathcal{S}(\cdot)=\binom{\dot{1}}{1}$. We saw in problem 3 above that $F_{\Pi(\mathcal{S})}(x)=e^{x e^{x}}$. Let

$$
i_{n}=n!\left[x^{n}\right] F_{\Pi(\mathcal{S})}(x)=n!\left[x^{n}\right] e^{x e^{x}}
$$

Find a sum formula for i_{n}. Note: The right-hand side of (6) is an example of a sum formula.

Solution:

$$
\begin{aligned}
\frac{i_{n}}{n!} & =\left[x^{n}\right] e^{x e^{x}} \\
& =\left[x^{n}\right] \sum_{m} x^{m} \frac{e^{m x}}{m!} \\
& =\sum_{m} \frac{1}{m!}\left[x^{n-m}\right] e^{m x} \\
& =\sum_{m} \frac{1}{m!}\left[x^{n-m}\right] \sum_{k} m^{k} \frac{x^{k}}{k!} \\
& =\sum_{m} \frac{1}{m!} \frac{m^{n-m}}{(n-m)!}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
i_{n} & =\sum_{m} \frac{n!}{m!(n-m)!} m^{n-m} \\
& =\sum_{m}\binom{n}{m} m^{n-m}
\end{aligned}
$$

It is worth mentioning that $i_{0}=1$ since $F_{\Pi(\mathcal{S})}(0)=1$, but the sum formula above returns the indeterminate expression 0^{0}. In this case, we should specify that we define $0^{0}=1$.
6. (10 points) Let $l_{0}=1$ and for $n>0$ let l_{n} count the number of ways to partition $[n]$ into an arbitrary number of nonempty linearly ordered blocks. In other words,

$$
l_{n}=\sum_{k}\left\lfloor\begin{array}{l}
n \\
k \\
\hline
\end{array}, \quad n \geq 0\right.
$$

Prove that the closed form of the exponential generating function $L(x)=\sum_{n} l_{n} x^{n} / n!$ is

$$
\begin{equation*}
L(x)=e^{\frac{x}{1-x}} \tag{5}
\end{equation*}
$$

Note: For this problem you may freely use my posted lecture notes or any of the other references listed on my Math 482 pages, but please do not use OEIS.

Solution:

Let $\mathcal{S}(\cdot)=\lfloor\grave{i}\rfloor$. As we saw in problem 4 above,

$$
F_{\mathcal{S}}(x)=L_{1}(x)=\frac{x}{1-x}=F_{\overline{\mathcal{S}}}(x)
$$

Notice that the last equality holds since $\overline{\mathcal{S}}=\mathcal{S}$.
So the problem is asking us to partition $[n]$ in all possible ways and to linearly order each block in all possible ways. In other words, this problem is describing the partition structure $\Pi(\mathcal{S})$. Thus

$$
L(x)=\sum_{n} l_{n} \frac{x^{n}}{n!}=F_{\Pi(S)}(x)
$$

It now follows by the exponential formula that

$$
F_{\Pi(S)}(x)=e^{F_{\overline{\mathcal{S}}(x)}}=e^{\frac{x}{1-x}}
$$

7. (10 points) Work only one of the parts below. Cross out the part that you do not want graded. I will award zero points if you fail to cross out one of the parts.
(a) Prove that for $n \geq 1$, we have

$$
c_{n}:=\left[\begin{array}{c}
n+1 \tag{6}\\
2
\end{array}\right]=n!\sum_{k=1}^{n} \frac{1}{k}
$$

Solution:

Let $C(x)=\sum_{n} c_{n} x^{n} / n$!. It is routine (using either the Wilf Rules or the recursion for cycle numbers) to show that

$$
C(x)=\frac{1}{1-x} \ln \frac{1}{1-x}
$$

It follows that

$$
\begin{aligned}
\frac{1}{n!}\left[\begin{array}{c}
n+1 \\
2
\end{array}\right]=\left[x^{n}\right] C(x) & =\left[x^{n}\right] \frac{1}{1-x} \ln \frac{1}{1-x} \\
& =\left[x^{n}\right] \frac{1}{1-x} \sum_{n \geq 1} \frac{x^{n}}{n} \\
& \stackrel{(*)}{=}\left[x^{n}\right] \sum_{n \geq 1} \sum_{k=1}^{n} \frac{1}{k} x^{n} \\
& =\sum_{k=1}^{n} \frac{1}{k}
\end{aligned}
$$

Here $\left(^{*}\right)$ follows by Wilf Rule 5. Multiplying through by n ! yields (6).
(b) Let F_{n} be the shifted Fibonacci numbers: $0,1,1,2,3,5,8,13,21, \ldots$ and let d_{n} be the derangement numbers described in problem 2. Express the sum formula below in a simple closed form.

$$
\begin{equation*}
s_{n}=\sum_{k}\binom{n}{k}\left(k F_{k-1}-F_{k}\right) d_{n-k} \tag{7}
\end{equation*}
$$

Note: You may be able to guess the closed form, but you must justify your claim to receive any credit.

