
MTH 482 Exercises - Exam 2 Spring 2024

Date Section Exercises** (QC - Quick Check and CE - Class Exercises)

02/19* - See below.

02/21* - See below.

02/23* - See below.

03/04* - See below.

03/06* Notes 1, 2 from here. Also, see below.

03/08* Notes 3, 4, 5 from here. Also, see below.

03/11* - See below.

03/13* - See below.

03/15* - See below.

03/18* - See below.

03/20* - (Optional) 4 from here. Also, see below.

03/22* 16.2 QC - 3; CE - 5, 6; Also, see below.

03/25* - CE - 43. Also, see below.

03/27* - CE - 31 and read Dilworth’s theorem. Also, see below.

03/29* - See below.

04/01* - CE - 5, 32-34. Also, see below.

04/03* - See below.

04/08* Notes Exercises 15 and 16 from Chapter 2. Also, see below.

04/10* - See below.

04/15* - See below.

02/19

1. Consider the following orthogonality identity.

∑

k

[

n

k

]{

k

m

}

(−1)n−k = δn(m) (1)

(a) There is a symmetric version of (1). State it.

(b) Use the Stirling Inversion Theorem (Theorem 2 here) to prove (1).

(c) In Math 481 we proved (2). See Example 5 here.

xn =
∑

k

{

n

k

}

xk (2)

We also proved the next result. See (7) here.

xn =
∑

k

[

n

k

]

xk (3)

Now use (2) to prove the following

xn =
∑

k

{

n

k

}

(−1)n−kxk (4)
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(d) Use the identities (3) and (4) to prove (1).

(e) Now use (1) (or part (a)) to prove the Stirling Inversion Theorem.

2. Reprove the Binomial Inversion Theorem (Equation (2) here) as indicated below.

(a) Let f(x) =
∑

n fn x
n/n! and g(x) =

∑

n gn xn/n! and mimic the proof of Theorem 2 shown here.

(b) Let f(x) =
∑

n fn x
n and g(x) =

∑

n gn x
n and once again mimic the proof of Theorem 2 shown here.

02/21

1. Show that

xn =
n
∑

k=0

⌊

n

k

⌋

xn (5)

and

xn =
n
∑

k=0

⌊

n

k

⌋

(−1)n−kxn (6)

2. Prove that
⌊

n

k

⌋

=
∑

j

[

n

j

]{

j

k

}

(7)

3. If n ≥ k ≥ 1, prove that
⌊

n

k

⌋

=

(

n− 1

k − 1

)

n!

k!
(8)

02/23

1. Find a combinatorial proof of (7) from 02/21.

Hint:
[

n
j

]

counts the number of ways to seat n knights at j nonempty round tables and
{

j
k

}

counts the
number of ways to distribute these j tables into k nonempty rooms. Both the tables and rooms are
indistinguishable.

2. Find a combinatorial proof of
∑

k

[

n

k

]{

k

m

}

(−1)k = (−1)nδn(m)

Hint: Using the hint given in the previous exercise, let E contain all seating arrangements with an even
number of tables and let O contain all seating arrangements with an odd number of tables. Now find a
bijection between E and O that has two exceptions.

**Exercises from the A Walk Through Combinatorics, 4th ed., Miklós Bóna, World Scientific 2
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3. Prove that
[

n

k

]

=
∑

0<j1<j2<···<jn−k<n

j1j2 · · · jn−k

Hint: Divide both sides of (3) by x and notice that the left-hand side is the product
(x+ 1)(x+ 2) · · · (x+ n− 1). Now compare the coefficient of xk−1 on the left and right-hand sides of the
resulting identity.

4. Referring to Example 3 here.

(a) Verify equations (9) and (13).

(b) Prove that
k

n

(

n

k

)

+
k + 1

n

(

n

k + 1

)

=

(

n

k

)

5. Use LIF to show that

bn =
∑

k

(

k

n− k

)

ak iff an =
1

n

∑

k

(

2n− k − 1

n− k

)

kbk(−1)n−k

Hint: Follow Example 3 from here.

03/04

1. Let f(x) =
∑

n≥1 fn x
n ∈ xC[[x]], f1 6= 0. For any g(x) ∈ C((x)), define the degree of g(x) as we did for

formal power series. That is, deg(g(x)) = min{n ∈ Z | [xn]g(x) 6= 0}. Now let k > 0. Show that
f(x)−k ∈ C((x)) with deg(f(x)−k) = −k.

2. Confirm the (**) step in the first proof of LIF from today’s lecture.

03/06

1. Suppose that z = z(x) satisfies z = xφ(z). For n ≥ 0, show that

[zn]φ(z)n = [xn]

{

xz′(x)

z(x)

}

= [xn]
1

1− xφ′(z(x))
(9)

Solution:

The direct proof is routine. As an alternative, we have

[zn]φ(z)n = [zn−1]
1

z
φ(z)n

= n[xn]

ˆ

dy

y y=z(x)

where we invoked the Lagrange Inversion formula backwards. And we can proceed as we did for
(13) in Problem 03 below.
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2. Let gn = [xn](1 + x+ x2)n, n ≥ 0. Use the previous exercise to show that

gn = [xn]
1√

1− 2x− 3x2
(10)

Solution:
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3. Show the following. Hint: For (11) use the generalized Binomial theorem.

1√
1− 4x

=
∑

n≥0

(

2n

n

)

xn (11)

(

1−
√
1− 4x

2x

)k

=
∑

n≥0

k(2n+ k − 1)!

n!(n+ k)!
xn (12)

1√
1− 4x

(

1−
√
1− 4x

2x

)k

=
∑

n≥0

(

2n+ r

n

)

xn (13)

Solution: For (11) we have

1√
1− 4x

= (1 + (−4x))−1/2 =
∑

n≥0

(−1/2

n

)

(−4x)n = · · ·

We leave the details to the student.

For (12), we let C(x) = (1−
√
1− 4x)/(2x) and let z(x) = C(x)− 1. Then as we have shown before (see

Example 2),

z = x(1 + z)2 = xφ(z) (14)

Now let W (z) = (1 + z)k, then by the Lagrange Inversion formula

[xn]C(x)k = [xn]W (z(x))

=
1

n
[zn−1]W ′(z)φ(z)n

=
k

n
[zn−1](1 + z)k−1(1 + z)2n

=
k

n
[zn−1](1 + z)2n+k−1

=
k

n

(

2n+ k − 1

n− 1

)

For (13), we once again use the Lagrange Inversion formula (step (*) below), but in the reverse direction.
Let z(x), C(x), andφ(z) be as shown above and let g(x) =

∑

n≥0

(

2n+r
n

)

xn. Then

[xn]g(x) =

(

2n+ r

n

)

= [zn](1 + z)2n+r

= [zn−1]
(1 + z)r

z
(1 + z)2n

= [zn−1]
(1 + z)r

z
φ(z)2n

∗
= n[xn]

ˆ

(1 + y)r

y
dy

y=z(x)

= [xn]xDx

ˆ

(1 + y)r

y
dy

y=z(x)

= [xn−1]
(1 + z)r

z

dz

dx z=xφ(z)

(15)
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Now by (14),

dz

dx
= φ(z) + xφ′(z)

dz

dx

Rearranging produces

dz

dx
=

φ(z)

1− xφ′(z)

Inserting this into (15) yields

(

2n+ r

n

)

= [xn−1]
(1 + z)r

z

φ(z)

1− xφ′(z) z=xφ(z)

= [xn−1]
φ(z)

z

(1 + z)r

1− xφ′(z) z=xφ(z)

= [xn−1]
1

x

(1 + z)r

1− xφ′(z) z=xφ(z)

= [xn]
(1 + z)r

1− xφ′(z) z=xφ(z)

Now since φ′(z) = 2(1 + z) and since 1 + z(x) = C(x), the last expression above produces

(

2n+ r

n

)

= [xn]
C(x)r

1− 2xC(x)

= [xn]
C(x)r√
1− 4x

which is equivalent to (13).

03/08

1. Let M0 = 1 and for n > 0, suppose that

Mn = Mn−1 +
n
∑

k=2

Mk−2Mn−k (16)

Show that if M(x) =
∑

n≥0 Mn x
n, then M(x) satisfies the functional equation

M(x)− 1 = xM(x) + x2M(x)2 (17)

03/11

1. Let {an}n≥0 ⊂ R with a0 6= 0. Find a sum formula for [zn]
(

∑N
k=0 ak x

k
)n

when N ∈ {2, 3}. Do you see a

pattern?

2. Let T = T Ω where Ω = {0, 1, 3}. However, this time we measure the size of each tree by the number of
edges. Let T (x) be the ordinary generating function for T . Find a sum formula for [xn]T (x).
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3. Let mn be the Motzkin numbers as defined here and let {cn}n≥0 be the Catalan numbers. Answer the
questions below.

(a) Show that
cn = m2n (18)

(b) Show that

mn =
∑

k

(

n

2k

)

ck and cn+1 =
∑

k

(

n

k

)

mk

(c) Show the Motzkin’s original definition (stated here) is equivalent to the one given in class by showing
that the original definition satisfies the following recursion.

mn = mn−1 +

n
∑

k=2

mk−2mn−k, n > 0

4. Find a formula tn for the number of triangulations of an (n+ 2)-gon. So t1 = 1 and t2 = 2 since there is
one triangulation of a triangle and there are two triangulations of a square.

03/13

1. Consider the lattice of compositions, (Kn,≤). Here Kn is the set of all compositions of n and α ≤ β is a
refinement of compositions defined by

If [α1, α2, . . . , αp] � α and [β1, β2, . . . , βq] � β, then [αk1
, αk2

, . . . , αkl
] � βk for k ∈ [q].

For example, in K11, 3 + 2 + 5 + 1 is a refinement of 5 + 5 + 1 hence [3, 2, 5, 1] ≤ [5, 5, 1]. On the other
hand, [3, 3, 4, 1] � [5, 5, 1]. Sketch the Hasse diagram for K4.

2. The Young lattice (Y,≤) is the set of all integer partitions and α ≤ β if the Young diagram for α is a
contained in the Young diagram for β. Sketch the Hasse diagram for Y up to integer partitions of 4.

03/15

1. Find all linear extensions (see Example 16.9 of the text) of the 5 posets shown in Figure 16.3 from the text.

2. List all 4-element posets.

3. How many linear extensions do the posets below have?

b

b

b b

a c d

b
b

b

b

b

a c

db
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03/18

1. Consider the poset P shown below and the linear extension L(a) = 1, L(b) = 3, L(c) = 2, L(d) = 4 to
answer the questions that follow.

b

b b

b

a = 0̂

c

d

b

(a) Let Z = Zζ be the upper-triangular matrix associated with zeta function ζP of P . Find Z.

(b) Use a CAS to find the matrix M = Mµ associated with the Möbius function µP of P .

(c) Now let µ(x) = µ(a, x) and compute µ(x) for all x ∈ P . Compare to the values that we obtained in
class using the linear extension K(a) = 1,K(b) = 2,K(c) = 3,K(d) = 4.

2. Repeat the previous exercise for the divisor lattice D30. If you are working with a classmate,

choose different linear extensions and compare results.

03/20

1. For each of the following posets (P,≤), sketch the Hasse diagram and use Theorem 16.15 from the text to
compute µ(x) := µ(0̂, x) for all x ∈ P .

(a) P = 2[4] and the partial order is set containment. That is, x ≤ y if x ⊆ y.

(b) P = Π4, the (set) partition poset. Here the partial order is “refinement”. That is, x ≤ y if each block
in x is contained in a block in y. For example, 1/2/34 ≤ 12/34.

(c) P = D40, the divisor lattice with the usual partial order.

2. Construct the ζ matrix Z for the divisor lattice D40 and use a CAS to find the µ matrix M . Compare the
first row of M with the values derived from the exercise above.

03/22 Read the proof of Theorem 7.6 in the text.

03/25

1. Use the Theorem 7.6 to re-prove Binomial inversion.
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2. Let P be the poset of the positive integers with x ≤ y ∈ P if x | y. Also, let p1, p2, . . . , pk be k distinct
primes and let y = p1 · p2 · · · pk. Show that [1, y] is isomorphic to Bk.

03/27

1. Let P and Q be posets. Show that P ×Q with partial order as given by Definition 16.23 is a poset.

2. Construct a poset P such that µ(0̂, x) = n for any n ∈ Z.

3. Let P and Q be posets and consider the following alternative (partial) orders on P ×Q. Is P ×Q a poset
under the given order? Note: Throughout, we assume that [p, p′] ⊂ P and [q, q′] ⊂ Q and, for example, we
write p ≤ p′ instead of p ≤P p′, etc.

(a) (p, q) ≤ (p′, q′) if p < p′ or if p = p′ and q ≤ q′.

(b) (p, q) ≤ (p′, q′) if p ≤ p′.

(c) (p, q) ≤ (p′, q′) if p < p′ and q < q′ or p = p′ and q = q′.

03/29 The exercises below depend on the following results.

Proposition. Let [x, y] be an interval in Πn with the usual refinement (partial) order. If
y = B1/B2/ · · · /Bk and if each Bi splits into ni blocks in x, then

[x, y] ∼=
k
∏

i=1

Πni
(19)

In particular,

µ(x, y) =

k
∏

i=1

µΠni
(0̂, 1̂),

by Theorem 16.24. For example, let x = 1/3/256/47 and y = 1347/256 in Π7. Then x < y and

µ(x, y) = µΠ3
(0̂, 1̂)µΠ1

(0̂, 1̂)

= (−1)22! · (−1)00! = 2

And the last line follows since

µ(Πn) := µΠn
(0̂, 1̂) = (−1)n−1(n− 1)! (20)

On Monday we will prove the above proposition and (20).

1. Use the above results to compute µ(x, 1̂) for all x ∈
{

4
k

}

for k ∈ [3]. Also, compute

µ(13/2/48/56/7, 123478/56) and µ(13/2/48/56/7, 1̂) in Π8.
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2. Let {fn}n≥1 where fn = 2Cn − n and Cn are the Catalan numbers. Let Πn be the set partition poset with
the usual refinement order. On Quiz 8 we defined F : Π4 → Z by the rule F (x) = f5−b(x) where b(x) is
equal to the number of blocks in x. If we define G(y) =

∑

x≤y F (x), then by Möbius inversion

F (y) =
∑

x≤y

G(x)µ(x, y) (21)

Use (21) to show that F (1234) = 24.

04/01

1. Find an interval [x, y] ⊂ Πn such that

(a) µ(x, y) = −12

(b) µ(x, y) = 96

Note: In each case, you will need to specify the value of n. Answers will not be unique.

2. Is there a positive integer n and an interval [x, y] such that µ(x, y) = ±72? Why or why not?

3. In our textbook’s the definition of the incidence algebra, I(P ), it is stated that P must be a locally finite
poset. Why is this?

4. Prove (19) in the proposition stated at the beginning of the assignments from 03/24.

04/03

1. Show that if {f(n)}n≥1 is a multiplicative function, then so is

g(n) =
∑

d|n

f(d)

2. Recall that Euler’s function φ(n) counts the number of integers 1 ≤ m ≤ n such that m is relatively prime
to n. Show by a counting argument that for n ∈ P one has

∑

d|n

φ(d) = n

04/08

1. Let σ(n) =
∑

d|n d. That is, σ(n) is the sum of the divisors of n.

(a) Show that σ is multiplicative.

(b) What does the Mobius Inversion formula say about σ?

2. Once again, let φ(n) be the Euler’s totient function (see problem 2 from 04/03).
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(a) Show that φ(n) = n
∑

d|n µ(d)/d.

(b) Let p be prime and k ∈ P. Show that φ(pk) = pk − pk−1.

(c) Let β1, β2, . . . , βr be real numbers. Show that

r
∏

j=1

(1− βj) = 1−
∑

i

βi +
∑

i<j

βiβj −
∑

i<j<k

βiβjβk + · · ·+ (−1)rβ1β2 · · ·βr

(d) Use the Principle of Inclusion/Exclusion and part(c) above to prove that

φ(n) = n
∏

p|n

(1− p−1)

04/10

1. If f is multiplicative (and not identically 0) show that f(1) = 1.

2. Prove that for n ∈ N we have
∑

d|n

µ(d) =

{

1 if n = 1,

0 if n > 1.

3. For n ∈ N define

Λ(n) =

{

log p if n = pm for some prime p and some m ≥ 1,

0 otherwise.

For example, Λ(6) = Λ(10) = 0 and Λ(3) = Λ(27) = log 3.

(a) Show that

log n =
∑

d|n

Λ(d)

(b) Show that

Λ(n) = −
∑

d|n

µ(d) log d

04/15

(a) Recall that the chromatic polynomial of the house H is χ(x) = χH(x) = x(x− 1)(x− 2)(x2 − 3x+ 3).
Notice that χ(3) = 18 so that there are 18 strictly compatible pairs (ρ, c). Here c is a proper 3-coloring
of H and ρ is the induced orientation. Sketch 6 of the proper colorings using [3] and include the induced
orientations, insuring that each of the 6 is acyclic.

(b) Do they same thing for barbell graph (n = 3). That is, find out how may strictly compatible pairs exist
using [3], but this time sketch only 2 of the proper 3-colorings and include the induced orientations.
Once again, insure that both orientations are acyclic.
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