Date	Section	Exercises** (QC - Quick Check and CE - Class Exercises)
$01 / 10^{*}$	8.2	CE $-31,32$
$01 / 12^{*}$	8.2	CE $-24,45,46$
$01 / 17^{*}$	5.3	CE $-7,8,11,14$
$01 / 19^{*}$	5.3	CE -30
$01 / 22^{*}$	-	See below.
$01 / 24^{*}$	-	See below.
$01 / 26^{*}$	-	See below.
$01 / 29^{*}$	-	See below.
$01 / 31^{*}$	-	See below.
$02 / 02$	-	$2,4,7$ from here.
$02 / 05^{*}$	-	See below.
$02 / 07^{*}$	-	See below.
$02 / 09^{*}$	-	See below.
$02 / 12^{*}$	-	See below.
$02 / 14^{*}$	-	See below.

$01 / 10$ Let i_{n} count the number of involutions in \mathfrak{S}_{n} (the set of all permutations on $[n]$) and let $i_{0}=1$. Recall: $\pi \in \mathfrak{S}_{n}$ is an involution if $\pi^{2}=\mathrm{id}$.
(a) Show that $i_{1}=1$ and for $n \geq 0$,

$$
\begin{equation*}
i_{n+2}=i_{n+1}+(n+1) i_{n} \tag{1}
\end{equation*}
$$

Solution:

An involution must consist entirely of 1-cycles and 2-cycles. Now the left-hand side counts the number of involutions on $[n+2]$. For the right-hand side, there are i_{n+1} involutions with $n+2$ in a 1-cycle. Otherwise, there are $\binom{n+1}{1}=n+1$ ways to choose the element paired with $n+2$ and i_{n} ways to permute the remaining items (as an involution). So by the product rule, there are $(n+1) i_{n}$ ways that $n+2$ can be in a 2 -cycle. Since these cases are mutually exclusive, the result now follows by the sum rule.
(b) Show that

$$
\sum_{n \geq 0} i_{n} \frac{x^{n}}{n!}=e^{x+x^{2} / 2}
$$

Solution:

Let $A(x)=\sum_{n} i_{n} x^{n} / n$!. According to the Wilf rules, the recursion (1) is equivalent to the following differential equation

$$
\begin{aligned}
A^{\prime \prime}(x) & =A^{\prime}(x)+(x D+I) A(x) \quad(D=\text { derivative operator and } I=\text { identity map }) \\
& =(x+1) A^{\prime}(x)+A(x)=D((x+1) A(x))
\end{aligned}
$$

Integrating both sides yields

$$
A^{\prime}(x)=(x+1) A(x)+C \quad\left(\text { but } C=0 \text { since } A^{\prime}(0)=A(0)=1\right)
$$

Rearranging and integrating gives

$$
\begin{aligned}
\frac{A^{\prime}(x)}{A(x)} & =1+x \\
\ln A(x) & =x+x^{2} / 2+C \quad(\text { and once again } C=0 \text { since } A(0)=1)
\end{aligned}
$$

The result now follows.

01/12

1. Let $c_{0}=1$ and for $n>0$ let c_{n} count the number of n-permutations in which each cycle is colored red, green, or blue.
(a) Find a sum formula for c_{n}.

Solution:

Let $\pi \in\left[\begin{array}{c}n] \\ k\end{array}\right]$. Then π can be colored in 3^{k} ways. So by the product rule, there are $\left[\begin{array}{l}n \\ k\end{array}\right] 3^{k}$ ways to color n-permutations that consist of exactly k cycles. Summing across k yields

$$
c_{n}=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] 3^{k}
$$

(b) Find a simple factorial formula for c_{n}.

Solution:

Manual computation using the above formula produces the sequence $1,3,12,60, \ldots$. So we guess $c_{n}=(n+2)!/ 2, n \geq 0$. Fortunately, we don't have to guess. In Math 481 we showed that

$$
\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}=x^{\bar{n}}=x(x+1) \cdots(x+n-1)
$$

After the substitution $x=3$, we obtain

$$
\begin{aligned}
c_{n} & =3(3+1) \cdots(3+n-1) \\
& =\frac{2}{2} \frac{3(3+1) \cdots(2+n)}{1}=\frac{(n+2)!}{2}
\end{aligned}
$$

(c) Let $C(x)=\sum_{n} c_{n} x^{n} / n$!. Find the closed form of $C(x)$.

Solution:

$$
\begin{aligned}
C(x) & =\sum_{n \geq 0} \frac{(n+2)!}{2} \frac{x^{n}}{n!} \\
& =\frac{1}{2} \sum_{n \geq 0}(n+2)(n+1) x^{n} \\
& =D^{2}\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{3}}
\end{aligned}
$$

(d) Now let $a_{0}=a_{1}=1$ and let $a_{n+2}=c_{n}$ for $n \geq 0$. Find the closed form for $A(x)=\sum_{n} a_{n} x^{n} / n$!. Note: I will explain the reason for this rather strange part.

Solution:

According to the Wilf rules, $A^{\prime \prime}(x)=C(x)$. It follows that $A(x)=(1-x)^{-1}$.
2. A coach wishes to break up her n-member team into 3 practice squads. Players on squad A will wear either red or blue jerseys, those on squad B will wear yellow or green jerseys, and squad C players will wear black jerseys. Let $t_{0}=1$ and for $n>0$, let t_{n} count the number of ways that she can do this.
(a) Find a simple formula for t_{n}.

Solution:

There are 6 jersey colors, so this should just be 6^{n}.
(b) Let $T(x) \stackrel{\text { egf }}{\longleftrightarrow}\left\{t_{n}\right\}$. Find the closed form of $T(x)$ and use it to confirm your answer in part (a).

Solution:

Let i, j, and k be the number of players resp. on squad A , squad B , and squad C . Then

$$
t_{n}=\sum_{i+j+k=n} \frac{n!}{i!j!k!} 3^{i} 2^{j} 1^{k}
$$

So by the Wilf rules, we must have

$$
\begin{aligned}
T(x)=\sum_{n} t_{n} \frac{x^{n}}{n!} & =\sum_{n} 3^{n} \frac{x^{n}}{n!} \sum_{n} 2^{n} \frac{x^{n}}{n!} \sum_{n} \frac{x^{n}}{n!} \\
& =e^{3 x} e^{2 x} e^{x}=e^{6 x}
\end{aligned}
$$

as expected.
(c) In addition to the initial conditions, suppose also that squad B has a captain and players on squad C wear numbered black jerseys. Find the closed form for $T(x)$ in this case.

Solution:

$$
t_{n}=\sum_{i+j+k=n} \frac{n!}{i!j!k!} 3^{i} j 2^{j} k!
$$

So by the Wilf rules, we must have

$$
\begin{aligned}
T(x)=\sum_{n} t_{n} \frac{x^{n}}{n!} & =\sum_{n} 3^{n} \frac{x^{n}}{n!} \sum_{n} n 2^{n} \frac{x^{n}}{n!} \sum_{n} n!\frac{x^{n}}{n!} \\
& =e^{3 x} 2 x e^{2 x} \frac{1}{1-x}=\frac{2 x e^{5 x}}{1-x}
\end{aligned}
$$

The first few terms of this sequence are

$$
0,2,24,222,1888,15690,131640,1140230,10371840, \ldots
$$

$01 / 17$ Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \vdash n$ and define $\pi: P_{k}([n]) \rightarrow P_{\leq k}([n-k])$ by $\pi(\lambda)=\left(\lambda_{1}-1, \lambda_{2}-2, \ldots, \lambda_{k}-1\right)$. Here we agree to collapse any zero entries. Show that π is a bijection.

01/19

1. We say that an integer partition λ is self-conjugate if $\lambda=\lambda^{t}$. Show that the number of self-conjugate $\lambda \vdash n$ is equal the number of $\mu \vdash n$ having distinct parts and odd. Hint: Use Young diagrams to find a bijection between the collection of self-conjugate partitions $P_{\text {elf }}([n])$ and the collection of partitions with distinct parts and odd, call it $P_{\mathrm{do}}([n])$.

Solution:

2. For $n \geq m \geq 0$, show that

$$
\sum_{k=0}^{m}\binom{m}{k} k^{n}(-1)^{k}=(-1)^{m} m!\left\{\begin{array}{c}
n \tag{2}\\
m
\end{array}\right\}
$$

Solution:

Recall that the Stirling numbers of the second kind can be defined as the numbers that allow powers of x to expressed in terms of the falling factorial. We have

$$
x^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \tag{3}\\
k
\end{array}\right\} x^{\underline{k}}
$$

Thus

$$
\begin{aligned}
\sum_{k}\binom{m}{k} k^{n}(-1)^{k} & =\sum_{k=0}^{m}\binom{m}{k} \sum_{j}\left\{\begin{array}{c}
n \\
j
\end{array}\right\} k^{j}(-1)^{k} \quad(\text { by }(3)) \\
& =\sum_{j} j!\left\{\begin{array}{l}
n \\
j
\end{array}\right\} \sum_{k}\binom{m}{k}\binom{k}{j}(-1)^{k} \\
& =\sum_{j} j!\left\{\begin{array}{l}
n \\
j
\end{array}\right\} \delta_{j m}(-1)^{m} \\
& =(-1)^{m} m!\left\{\begin{array}{l}
n \\
m
\end{array}\right\}
\end{aligned}
$$

3. Let $D(x)=\prod_{j \geq 0}\left(1+x^{2^{j}}\right)$. Find a combinatorial proof that $D(x)=(1-x)^{-1}$.

Hint: Show that $\left[x^{n}\right] D(x)=1$ for all n.

Solution:

This was done in class, but the basic idea is that there is exactly one way to write any positive integer in base 2 .
4. Let $g(n)$ count the number of partitions of n that have no part equal to 1 or 2 . Express $g(n)$ in terms of $p(n)$.

Solution:

Observe that this implies that $n \geq 3$. Now let $G(x)=\sum_{n} g(n) x^{n}$. Then

$$
\begin{aligned}
G(x)=\sum_{n \geq 0} f(n) x^{n} & =\frac{1}{1-x^{3}} \cdot \frac{1}{1-x^{4}} \cdots \\
& =\frac{1-x}{1-x} \cdot \frac{1-x^{2}}{1-x^{2}} \cdot \frac{1}{1-x^{3}} \cdot \frac{1}{1-x^{4}} \cdots \\
& =\left(1-x-x^{2}+x^{3}\right) \mathcal{E}(x)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
g(n) & =\left[x^{n}\right]\left(1-x-x^{2}+x^{3}\right) \mathcal{E}(x) \\
& =\left[x^{n}\right] \mathcal{E}(x)-\left[x^{n-1}\right] \mathcal{E}(x)-\left[x^{n-2}\right] \mathcal{E}(x)+\left[x^{n-3}\right] \mathcal{E}(x) \\
& =p(n)-p(n-1)-p(n-2)+p(n-3), \quad n \geq 3
\end{aligned}
$$

$01 / 22$

1. Binary Words - Let $\mathcal{B}=\{a, b\}$ where $|a|=|b|=1$. Find the first 6 terms in the counting sequence A_{n} of $\mathcal{A}=\operatorname{SEQ}(\mathcal{B})$.
2. We showed in class that $\mathbb{N}=\operatorname{SEQ}\left(\mathcal{Z}_{\bullet}\right) \backslash\{\square\}$. Find the generating function for $\mathcal{C}=\operatorname{SEQ}(\mathbb{N})$.

Solution:

Notice that \mathbb{N} has one object of size 1 , one object of size 2 , etc. It follows that its generating function is $\frac{1}{1-x}-1=\frac{x}{1-x}$ and the ordinary generating function of the class \mathcal{C} is

$$
\begin{equation*}
C(x)=\frac{1}{1-\frac{x}{1-x}}=\frac{1-x}{1-2 x} \tag{4}
\end{equation*}
$$

Also, its counting sequence must be

$$
\begin{align*}
{\left[x^{n}\right] C(x) } & =\left[x^{n}\right] \frac{1}{1-2 x}-\left[x^{n}\right] \frac{x}{1-2 x} \tag{5}\\
& =2^{n}-2^{n-1}=2^{n-1} \tag{6}
\end{align*}
$$

In class we observed that \mathcal{C} was combinatorially equivalent to the class of compositions and we already know that the counting sequence for this class is $\left\{2^{n-1}\right\}_{n \geq 1}$, in agreement with (6).
3. Let $\mathcal{Z}_{\bullet}=\{\bullet\}$ and $\mathcal{B}_{(j, k)}=\underbrace{\mathcal{Z}_{\bullet} \times \cdots \times \mathcal{Z}_{\bullet}}_{j \text { factors }}+\underbrace{\mathcal{Z}_{\bullet} \times \cdots \times \mathcal{Z}_{\bullet}}_{k \text { factors }}=\mathcal{Z}_{\bullet}^{j}+\mathcal{Z}_{\bullet}^{k}$.
(a) Find the generating function of $\mathcal{B}_{(2,5)}$ and $\mathcal{C}=\operatorname{SEQ}\left(\mathcal{B}_{(2,5)}\right)$.

Solution:

We have $B(x)=x^{2}+x^{5}$ so that

$$
C(x)=\sum_{n} c_{n} x^{n}=\frac{1}{1-x^{2}-x^{5}}
$$

It is easy to confirm (by writing out the elements in \mathcal{C}) that the first few terms of coefficient sequence $\left\{c_{n}\right\}$ must be $1,0,1,0,1,1, \ldots$ in agreement with this.
(b) Find the generating function of $\mathcal{B}_{(1, k)}$ and $\mathcal{C}=\operatorname{SEQ}\left(\mathcal{B}_{(1, k)}\right)$.

Solution:

We have $B(x)=x+x^{k}$ so that

$$
C(x)=\sum_{n} c_{n} x^{n}=\frac{1}{1-x-x^{k}}
$$

(c) In class, we showed that the generating function of $\mathcal{A}=\operatorname{SEQ}\left(\mathcal{B}_{(1,2)}\right)$ was $A(x)=\left(1-x-x^{2}\right)^{-1}$. Find the generating function for $\mathcal{C}=\operatorname{SEQ}(\mathcal{A} \backslash \mathcal{E})$. The first few terms in the sequence of coefficients c_{n} are $1,1,3,8,22,60, \ldots$ Note: You will need to figure out what the generating function $A_{\epsilon}(x)$ for the class $\mathcal{A} \backslash \mathcal{E}$ must be, but that shouldn't be too difficult since $A_{\epsilon}(x)=A(x)-A(0)$.

Using the symbols $\bullet \bullet \bullet$, also list the 8 elements of size three. For example,

are the 3 elements of size two.

Solution:

Since $A_{\epsilon}(x)=\frac{1}{1-x-x^{2}}-1$, the ordinary generating function for \mathcal{C} is

$$
C(x)=\frac{1}{1-A_{\epsilon}(x)}=\frac{1-x-x^{2}}{1-2 x-2 x^{2}}
$$

01/24

1. More on exponential generating functions.
(a) On Quiz 1 we used the identity in (2) to find a closed form for the exponential generating function below.

$$
S_{k}(x)=\sum_{n \geq 0}\left\{\begin{array}{l}
n \tag{7}\\
k
\end{array}\right\} \frac{x^{n}}{n!}=\frac{\left(e^{x}-1\right)^{k}}{k!}
$$

Reprove (7) using the recursion for $\left\{\begin{array}{l}n \\ k\end{array}\right\}$. Hint: Try induction on k.

Solution:

Following the hint, we proceed by induction on k. For $k=0$, we have

$$
\begin{aligned}
S_{0}(x) & =\sum_{n \geq 0}\left\{\begin{array}{l}
n \\
0
\end{array}\right\} \frac{x^{n}}{n!} \\
& =\left\{\begin{array}{l}
0 \\
0
\end{array}\right\} \frac{x^{0}}{0!}+\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} \frac{x^{1}}{1!}+\cdots+\left\{\begin{array}{c}
n \\
0
\end{array}\right\} \frac{x^{n}}{n!}+\cdots \\
& =1+0+0+\cdots
\end{aligned}
$$

in agreement with (7) and the base case is established. Now suppose (7) holds for all $j<k$. Then

$$
\begin{array}{rlr}
S_{k}^{\prime}(x) & =\sum_{n \geq 0}\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\} \frac{x^{n}}{n!} \\
& =k \sum_{n \geq 0}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \frac{x^{n}}{n!}+\sum_{n \geq 0}\left\{\begin{array}{c}
n \\
k-1
\end{array}\right\} \frac{x^{n}}{n!} & \text { (Wilf Rule } \left.1^{\prime}\right) \\
& =k S_{k}(x)+\frac{\left(e^{x}-1\right)^{k-1}}{(k-1)!} & \quad \text { (by recursion) }
\end{array}
$$

Rearranging produces the differential equation

$$
S_{k}^{\prime}(x)-k S_{k}(x)=\frac{\left(e^{x}-1\right)^{k-1}}{(k-1)!}
$$

which can be evaluated by elementary techniques. We try multiplying by the integrating factor $e^{-k x}$ to obtain

$$
D_{x}\left(e^{-k x} S_{k}(x)\right)=\frac{\left(1-e^{-x}\right)^{k-1}}{e^{x}(k-1)!}
$$

Integrating both sides produces

$$
e^{-k x} S_{k}(x)=\frac{\left(1-e^{-x}\right)^{k}}{k!}+C \quad\left(\text { but } C=0 \text { since } S_{k}(0)=0\right)
$$

Now this last equation is equivalent to (7).
Remark. Notice that $S_{1}(x)=\sum_{n \geq 1}\left\{\begin{array}{l}n \\ 1\end{array}\right\} \frac{x^{n}}{n!}=\sum_{n \geq 1} \frac{x^{n}}{n!}=e^{x}-1$. One could then determine that $S_{2}(x)=\left(e^{x}-1\right)^{2} / 2$, as we do in part (b) below, to "guess" the general formula in (7).
(b) Find a formula for $C_{k}(x)=\sum_{n \geq 0}\left[\begin{array}{l}n \\ k\end{array}\right] \frac{x^{n}}{n!}$ and then use the recursion for $\left[\begin{array}{l}n \\ k\end{array}\right]$ to verify your formula.

Solution:

We claim that

$$
C_{k}(x)=\sum_{n \geq k}\left[\begin{array}{l}
n \tag{8}\\
k
\end{array}\right] \frac{x^{n}}{n!}=\frac{1}{k!}\left(\ln \frac{1}{1-x}\right)^{k}
$$

We outline the proof below.
(i) First recall that $\left[\begin{array}{l}n \\ 1\end{array}\right]=(n-1)$!. Thus

$$
C_{1}(x)=\sum_{n}\left[\begin{array}{l}
n \\
1
\end{array}\right] \frac{x^{n}}{n!}=\sum_{n \geq 1} \frac{x^{n}}{n}
$$

It follows that

$$
C_{1}^{\prime}(x)=\sum_{n \geq 1} x^{n-1}=\frac{1}{1-x}
$$

so that

$$
C_{1}(x)=\ln \frac{1}{1-x}
$$

(ii) Before we try to guess a general pattern, let's try to find the closed form of $C_{2}(x)$. Taking derivatives in part (i) turned out to be useful. If we apply Wilf Rule 1^{\prime} together with the recursion formula for $\left[\begin{array}{l}n \\ k\end{array}\right]$, we obtain

$$
\begin{aligned}
C_{2}^{\prime}(x) & =\sum_{n}\left[\begin{array}{c}
n+1 \\
2
\end{array}\right] \frac{x^{n}}{n!} \\
& =\sum_{n} n\left[\begin{array}{c}
n \\
2
\end{array}\right] \frac{x^{n}}{n!}+\sum_{n}\left[\begin{array}{c}
n \\
1
\end{array}\right] \frac{x^{n}}{n!} \\
& =x C_{2}^{\prime}(x)+C_{1}(x)
\end{aligned}
$$

Rearranging yields the differential equation,

$$
C_{2}^{\prime}(x)=\frac{1}{1-x} \ln \frac{1}{1-x}
$$

which admits the solution,

$$
C_{2}(x)=\frac{1}{2}\left(\ln \frac{1}{1-x}\right)^{2}
$$

(iii) We claim that the general form appears to be

$$
C_{k}(x)=\frac{1}{k!}\left(\ln \frac{1}{1-x}\right)^{k}
$$

The proof of this fact is nearly identical to part (ii) and we leave it as an exercise. See also part (a) above.
2. Consider the sequence $\left\{a_{n}\right\}$ satisfies the following recursion. $a_{0}=a_{1}=1, a_{2}=2$ and for $n>2$

$$
a_{n+1}=(n+1) a_{n}-\binom{n}{2} a_{n-2}
$$

The first few terms of this sequence are $1,1,2,5,17,73, \ldots$. Show the exponential generating function $A(x)=\sum_{n} a_{n} x^{n} / n$! satisfies the ordinary differential equation

$$
(1-x) A^{\prime}(x)=\left(1-\frac{x^{2}}{2}\right) A(x)
$$

and is given by

$$
A(x)=\frac{e^{x / 2+x^{2} / 4}}{\sqrt{1-x}}
$$

01/26
(a) Prove that Subset $\cong \operatorname{SEQ}(\{0,1\})$ with $|0|=|1|=1$ (see Example 1 here).
(b) Use equation (1) from here to prove the Binomial theorem. That is, prove that $(1+y)^{n}=\sum_{k}\binom{n}{k} y^{k}$.
(c) Convince yourself that Definition 2 from here makes sense by generating all of the terms in the expansion of the right-hand side of equation (1) for $0 \leq n \leq 3$.

01/29

1. List at least 8 elements in each of the following classes. Also, find the corresponding generating functions.
(a) $b \operatorname{SEQ}(a)$

Solution:

The ordinary generating function is

$$
\frac{x}{1-x}
$$

(b) $\operatorname{SEQ}(b \operatorname{SEQ}(a))$

Solution:

The ordinary generating function is

$$
\frac{1}{1-\frac{x}{1-x}}
$$

Notice that we used the generating function from part (a).
(c) $\operatorname{SEQ}(a) \operatorname{SEQ}(b \operatorname{SEQ}(a))$

Solution:

The ordinary generating function is

$$
\frac{1}{1-x} \frac{1}{1-\frac{x}{1-x}}=\frac{1}{1-2 x}
$$

Notice that we used the generating function from part (b).
2. Let $\mathcal{W}^{2}=\operatorname{SEQ}(a) \operatorname{SEQ}(b \operatorname{SEQ}(a))$.
(a) Identify \mathcal{W}^{2}. List enough elements to see what is going on and find a more direct description.

Solution:

Should be words of arbitrary length using the alphabet $\{a, b\}$, in agreement with the generating function that we found in problem 1(c) above.
(b) What is \mathcal{W}^{1} ? Express \mathcal{W}^{3} in two different ways.

Solution:

$\mathcal{W}^{1}=\varepsilon+a+a a+a a a+\cdots$. In other words (no pun intended), words of arbitrary length using the alphabet $\{a\}$.
\mathcal{W}^{3} should be words of arbitrary length using the alphabet $\{a, b, c\}$.
$01 / 31$ Let $\mathcal{B}=\{\bullet \bullet \bullet \bullet \bullet \bullet \bullet\}$. So \mathcal{B} has 1 object of size one and 2 objects of size three. The first few terms in the counting sequence for the class $\mathcal{A}=\operatorname{SEQ}(\mathcal{B})$ are $1,1,1,3,5,7,13,23, \ldots$ Answer the questions below.
(a) List the 5 elements of size four and the 7 elements of size five in \mathcal{A}.

Solution:

We list the 5 elements of size 4 :

Notice that the first element is an (ordered) 4-tuple, the second and third are ordered triples, and the last two are ordered pairs.
(b) Find the generating function of \mathcal{A}.

Solution:

The ordinary generating function of \mathcal{B} is $B(x)=x+2 x^{3}$. It follows that

$$
A(x)=\frac{1}{1-x-2 x^{3}}
$$

(c) Find the generating function of $\operatorname{SEQ}(\bullet \bullet \mathcal{A})$. List all objects of size five.

Solution:

The ordinary generating function is

$$
\frac{1}{1-x^{2} A(x)}=\frac{1}{1-\frac{x^{2}}{1-x-2 x^{3}}}
$$

The first 12 terms of the counting sequence of this class are $1,0,1,1,2,5,9,18,37,73,146,293$. As you can see, there should be 5 elements of size five and they are

$$
(\bullet, \bullet \bullet),(\bullet, \bullet \bullet),(\bullet, \bullet \bullet, \bullet),(\bullet \bullet, \bullet, \bullet),(\bullet \bullet, \bullet, \bullet, \bullet)
$$

The first two elements are ordered pairs, the next two are ordered triples, and the last item is an ordered 4 -tuple.
$02 / 05$ Let k be a fixed nonnegative integer and let L be a finite label set. Find the exponential generating functions of each of the following labeled structures.

Solution:

Most of these were done in class or in section 4.3 of Sagan's book here.
(a) $L \rightarrow B(L)$, set partitions on L.
(b) $L \rightarrow\left\{\begin{array}{l}L \\ k\end{array}\right\}$, set partitions on L of size k.
(c) $L \rightarrow\left\{\begin{array}{l}L \\ k\end{array}\right\}_{o}$, ordered set partitions on L of size k. Note: The blocks are ordered. So, for example, $12 / 3 \neq 3 / 12$.
(d) $L \rightarrow \mathfrak{G}(L)$, permutations on L.
(e) $L \rightarrow\left[\begin{array}{l}L \\ k\end{array}\right]$, permutations on L with exactly k cycles.
(f) $L \rightarrow\left[\begin{array}{l}L \\ k\end{array}\right]_{o}$, permutations on L with exactly k ordered cycles.

02/07

1. Show that $[\dot{[}]_{o}=\left([\dot{\dot{1}}]_{o} \times\left[{ }_{i}\right]_{o}\right)(\cdot)$.

Solution:

Done in class on Wednesday.

Solution:

Similar to problem 1 above.

02/09

1. Find the exponential generating function for $F_{\mathcal{S}}, F_{\mathcal{T}}$, and $F_{\mathcal{S} \times \mathcal{T}}$ for each of the following.
(a) $\mathcal{S}(\cdot)=2$ and $\mathcal{T}(\cdot)=\left\{\begin{array}{l}\dot{2} \\ 2\end{array}\right\}$.

Solution:

In class we showed that $F_{\mathcal{S}}(x)=e^{2 x}$ and $F_{\mathcal{T}}(x)=\left(e^{x}-1\right)^{2} / 2$. So by the Product Rule,

$$
F_{\mathcal{S} \times \mathcal{T}}(x)=\frac{e^{2 x}\left(e^{x}-1\right)^{2}}{2}
$$

(b) $\mathcal{S}(\cdot)=2$ and $\mathcal{T}(\cdot)=\left[\begin{array}{c}\cdot \\ 3\end{array}\right]$.

Solution:

In class we showed that $F_{\mathcal{S}}(x)=e^{2 x}$ and $F_{\mathcal{T}}(x)=\frac{1}{3!}\left(\ln \frac{1}{1-x}\right)^{3}$. So by the Product Rule,

$$
F_{\mathcal{S} \times \mathcal{T}}(x)=\frac{e^{2 x}}{3!}\left(\ln \frac{1}{1-x}\right)^{3}
$$

2. Use the exercises from $02 / 07$ and the Product Rule to show the following.
(a) $\left\{\begin{array}{l}n \\ 2\end{array}\right\}=2^{n-1}-1$

Solution:

We can also appeal directly to the fact that $F_{\left\{{ }_{2}\right\}}(x)=\frac{\left(e^{x}-1\right)^{2}}{2}$. Thus

$$
\left\{\begin{array}{l}
n \\
2
\end{array}\right\}=n!\left[x^{n}\right] \frac{\left(e^{x}-1\right)^{2}}{2}=\frac{n!}{2}\left[x^{n}\right]\left(e^{2 x}-2 e^{x}+1\right)=\frac{n!}{2}\left(\frac{2^{n}}{n!}-2 \frac{1}{n!}\right)=2^{n-1}-1
$$

(b) $\left[\begin{array}{c}n+1 \\ 2\end{array}\right]=n$! $\sum_{k=1}^{n} \frac{1}{k}$

02/12

2. Find $\Pi\left(\left\{\begin{array}{l}\dot{k}\} \\ k\end{array}\right)([5])\right.$ for $k \in\{2,3\}$.
3. Let j_{n} count the number of involutions in \mathfrak{S}_{n} that have no fixed points. Give combinatorial proofs that $j_{2 n+1}=0$ and $j_{2 n}=1 \cdot 3 \cdot 5 \cdots(2 n-1)$.

02/14 This a continuation of problem 3 from 02/12.
(a) Use the exponential formula to find the closed form of the exponential generating function $\sum_{n} j_{n} x^{n} / n$!. Compare with problem 01/10 above.

Solution:

An involution is a permutation made up only of cycles of length 1 or 2 . If fixed points are forbidden, then j_{n} must count only permutations made up of 2-cycles. So let $\mathcal{S}(L)=\left[\begin{array}{l}L \\ 1\end{array}\right]$ if $|L|=2$ and $\mathcal{S}(L)=\emptyset$ otherwise. It follows that $s_{n}=\delta_{2}(n)$ and the exponential generating function of $\mathcal{S}(\cdot)$ is

$$
F_{\mathcal{S}}(x)=\sum_{n} \delta_{2}(n) \frac{x^{n}}{n!}=\frac{x^{2}}{2}
$$

It follows that

$$
\begin{aligned}
\sum_{n} j_{n} x^{n} / n! & =F_{\Pi(\mathcal{S})}(x)=e^{F_{\mathcal{S}}(x)} \\
& =e^{x^{2} / 2}
\end{aligned}
$$

(b) Use the function from part (a) to give a generating function derivation of the formula in problem 3.

Solution:

Notice that

$$
\begin{equation*}
e^{x^{2} / 2}=\sum_{n} 2^{-n} \frac{x^{2 n}}{n!} \tag{9}
\end{equation*}
$$

It is then easy to see that $j_{2 n+1}=(2 n+1)!\left[x^{2 n}\right] e^{x^{2} / 2}=0$ since the function in (9) is even. On the other hand,

$$
\begin{aligned}
j_{2 n} & =(2 n)!\left[x^{2 n}\right] \sum_{n} 2^{-n} \frac{x^{2 n}}{n!} \\
& =\frac{(2 n)!}{n!} \frac{1}{2^{n}}
\end{aligned}
$$

which is equivalent to the formula given in problem 3 above.
(c) Let t_{n} count the number of permutations in \mathfrak{S}_{n} with no fixed points whose cube is the identity. For example, let $\pi=(132) \in \mathfrak{S}_{3}$. Then π has no fixed points and $\pi^{3}=\mathrm{id}$. Find the closed form of the exponential generating function $\sum_{n} t_{n} x^{n} / n$!.

Solution:

Such a permutation must be made up only of cycles of length 3 . So let $\mathcal{S}(L)=\left[\begin{array}{l}L \\ 1\end{array}\right]$ if $|L|=3$ and $\mathcal{S}(L)=\emptyset$ otherwise. It follows that $s_{n}=2 \delta_{3}(n)$ and the exponential generating function of $F_{\mathcal{S}}(x)=2 x^{3} / 3$!. It follows by the exponential formula that

$$
\sum_{n} t_{n} \frac{x^{n}}{n!}=e^{2 x^{3} / 6}
$$

Note: The reason that $s_{3}=2$ is because (132) and (123) are the only permutations in \mathfrak{S}_{3} whose cube is the identity with no fixed points. We leave any remaining details to the student.
(d) What happens if we allow fixed points in part (c)?

Solution:

$$
\sum_{n} t_{n} \frac{x^{n}}{n!}=e^{x+2 x^{3} / 6}
$$

