1. (10 points) A standard deck of 52 playing cards contains 4 suits {♣, ◊, ♡, ♠}, with 13 cards in each suit. How many cards must be drawn (at random) to guarantee 3 cards from the same suit. Justify your claim.

Solution:

We must draw 9 cards. Let r = 2 and notice that we have k = 4 suits. If we draw only 8 cards, we could end up with two \clubsuit 's, two \diamondsuit 's, two \circlearrowright 's, and two \clubsuit 's. On the other hand, since $9 > 2 \cdot 4$, we must have chosen at least 3 cards in a one suit, by the Pigeonhole Principle.

2. (10 points) Let $\mathfrak{J} \subset 2^{[n]} \times 2^{[n]}$ denote the set of all ordered pairs (A, B) with $A \cap B \neq \emptyset$. For example, for n = 8, we let $A = \{1, 2, 5\}$ and $B = \{1, 5\}$. Then $A \cap B = \{1, 5\}$ so that (A, B) and (B, A) are distinct elements in \mathfrak{J} . Find $|\mathfrak{J}|$.

Solution:

Let $n \in \mathbb{P}$. We claim that

$$\begin{aligned} |\mathfrak{J}| &= 4^n - \sum_{k=0}^n \binom{n}{k} 2^{n-k} = 4^n - \sum_{k=0}^n \binom{n}{k} 2^{n-k} (1)^k \\ &= 4^n - (1+2)^n \\ &= 4^n - 3^n \end{aligned}$$

Here the second line follows from the Binomial Theorem.

To justify the claim, observe that $|2^{[n]} \times 2^{[n]}| = 2^n \times 2^n$. Now we enumerate the ordered pairs $(A, B) \in \mathfrak{J}^c$ by indexing on k = |A|. If k = 0 then $A = \emptyset$ and B can be any subset of [n], so there are $1 \cdot 2^n = \binom{n}{0} 2^n$ ordered pairs in this case. If k = 1 there are $\binom{n}{1}$ ways to choose $A = \{j\}$, $j \in [n]$ and B can be any one of the 2^{n-1} subsets of $[n] \setminus \{j\}$. So by the product rule, there $\binom{n}{1} 2^{n-1}$ ordered pairs in \mathfrak{J}^c when A is a singleton. It follows that the general term is of the form $\binom{n}{k} 2^{n-k}$, with k = |A|. Now since the indexed cases are mutually disjoint, we have

$$|\mathfrak{J}^c| = \sum_{k=0}^n \binom{n}{k} 2^{n-k}$$

It now follows that

$$\begin{aligned} |\mathfrak{J}| &= 2^n \times 2^n - |\mathfrak{J}^c| \\ &= 4^n - \sum_{k=0}^n \binom{n}{k} 2^{n-k} \end{aligned}$$

as desired.