
Exponential Generating Functions

The Wilf Rules for Exponential Generating Functions

Now suppose that f
egf←−−→ {an}n≥0. What is the generating function for the sequence {an+1}n≥0? We have

∑

n≥0

an+1

xn

n!
=
∑

n≥0

an+1(n+ 1)
xn

(n+ 1)!
= f ′

This gives us.

Rule 1′. If f
egf←−−→ {an}n≥0 and k is a positive integer, then

Dkf
egf←−−→ {an+k}n≥0 (1)

Example 1. Consider the (shifted) Fibonacci numbers F0 = 0, Fn = fn−1, n > 0 and let G
egf←−−→ {Fn}n. It is

easy to see that these numbers satisfy the recurrance

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1 (2)

Now by Rule 1′, G must satisfy the differential equation

G′′(x) = G′(x) +G(x), G(0) = 0, G′(0) = 1 (3)

This equation can be solved by the method of characteristic polynomials to yield the solution

G(x) =
eφx − e−x/φ

√
5

, φ =
1 +
√
5

2
(4)

Now to find Fn we simply apply the operator n![xn] to (4). Thus

Fn = n![xn]G(x) = n![xn]
eφx − e−x/φ

√
5

=
n![xn]√

5

∑

n≥0

(φn − (−1/φ)n)x
n

n!

=
1√
5
(φn − (−1/φ)n)

=
φn − (−φ)−n

√
5

It turns out that multiplying terms in the sequence by n is the same for egf as it was for ogf. We have

Rule 2′. If f
egf←−−→ {an}n≥0 and P is a polynomial, then

P (xD)f
egf←−−→ {P (n)an}n≥0 (5)
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The most interesting rule regarding egf’s involves multiplication. Now suppose that f
egf←−−→ {an}n and

g
egf←−−→ {bn}n, then by Rule 3 we have

fg =







∑

n≥0

anx
n

n!













∑

m≥0

bmxm

m!







=
∑

n≥0

(

n
∑

k=0

ak
k!

bn−k

(n− k)!

)

xn

=
∑

n≥0

(

n
∑

k=0

n!

k!(n− k)!
akbn−k

)

xn

n!

=
∑

n≥0

(

n
∑

k=0

(

n

k

)

akbn−k

)

xn

n!

Rule 3′. If f
egf←−−→ {an}n and g

egf←−−→ {bn}n, then

fg
egf←−−→

{

n
∑

k=0

(

n

k

)

akbn−k

}

n

(6)

Example 2. In an earlier lecture, we showed that the Bell numbers bn satisfied the following recursion

bn+1 =
∑

k

(

n

k

)

bk, b0 = 1, n > 0 (7)

Now let B
egf←−−→ {bn}n. We multiply both sides of by xn/n! sum over n ≥ 0. By Rule 1′, B′ egf←−−→ {bn+1}n and

hence

B′(x) =
∑

n≥0

(

n
∑

k=0

(

n

k

)

bk

)

xn

n!

=
∑

n≥0

(

n
∑

k=0

(

n

k

)

bk · 1
)

xn

n!

=







∑

n≥0

bn
xn

n!













∑

n≥0

xn

n!







= B(x)ex

by Rule 3′. Now we can proceed as we did before. Rearranging, we have

B′(x)

B(x)
= ex (8)

Integrating both sides yields

lnB(x) = ex + C = ex − 1

since B(0) = 1. It follows that the exponential generating function for the Bell numbers is

B(x) = ee
x−1

as we have seen before.
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Example 3. A local soccer team has n players. The coach decides to split the players up into two groups. In the
first group, players must choose either a green Jersey, a white Jersey, or a blue Jersey. The players in the second
group must wear a yellow Jersey. In how many ways can the coach choose the two groups?

Let cn count the number of ways that this can be done and let C(x) be the corresponding egf. Now there
(

n
k

)

to
choose the k members for the first group and 3k ways that the group members can choose their Jerseys. And there
is only one way to choose the second group. So by the product rule, there 3k

(

n
k

)

· 1 ways to choose a group of k
students from a group of n students under the given conditions. Summing over all values of k yields

cn =

n
∑

k=0

(

n

k

)

3k (9)

It follows by Rule 3′ that

C(x) =







∑

n≥0

3n
xn

n!













∑

n≥0

xn

n!







= e3xex

Now

cn = n![xn]e4x = 4n

Now since (9) can be computed directly using the Binomial theorem, the last result isn’t very impressive. Indeed,

cn =

n
∑

k=0

(

n

k

)

3k = (1 + 3)n

The next example is a bit more interesting.

Example 4. Rework the previous problem except as noted below.

a. This time the coach will choose a captain from the second group. In how many ways can this be done?

Adapting the notation from Example 3, we see that for a fixed k, there are 3k
(

n
k

)

· (n− k) the coach can
choose the groups. Once again, summing over all k yields

cn =

n
∑

k=0

(

n

k

)

3k(n− k) (10)

It follows by Rule 3′ that

C(x) =







∑

n≥0

3n
xn

n!













∑

n≥0

n
xn

n!







= e3xxex

by Rule 2′. Now

cn = n![xn]xe4x = n![xn−1]e4x = n4n−1

b. For this arrangement, the second group will be placed (ordered) in a line. In how many ways can this be done?
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Again using the notation from Example 3, we see that for a fixed k, there are 3k
(

n
k

)

· (n− k)! ways that the
coach can choose the groups. Summing over all k yields

cn =
n
∑

k=0

(

n

k

)

3k(n− k)! (11)

It follows by Rule 3′ that

C(x) =







∑

n≥0

3n
xn

n!













∑

n≥0

n!
xn

n!







= e3x
1

1− x

Now

cn = n![xn]
e3x

1− x

The first 10 terms of the sequence are 1, 4, 17, 78, 393, 2208, 13977, 100026, 806769, 7280604.

A “closed form” was discovered for this sequence in 2017 by Peter Luschny, apparently. It turns out that

cn = e3Γ(1 + n, 3)

where Γ is the upper incomplete gamma function and is defined by the improper integral

Γ(s, x) =

ˆ ∞

x

ts−1e−t dt, s ∈ C

Remark. We discuss the gamma function below.
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You may have noticed that many examples in this course involve factorials .What is the factorial function? Is there
some easier way to work with it?

Let n be a nonnegative integer. The factorial is defined by rule

0! = 1

n! = n(n− 1) · · · 2 · 1, n > 0

At the beginning of the 18th century, mathematicians set about looking to (continuously) extend the factorial to
non-integer values. As usual it was Euler who found the solution.

Definition. The Gamma Function

Γ(x) = Γ(x, 0) =

ˆ ∞

0

tx−1e−t dt (12)

Here the (improper) integral converges absolutely for all x ∈ R except for the non-positive integers. In fact, the
Gamma function can be extended throughout the complex plane (again, except for the non-positive integers).

y = Γ(x)

b b
b

b

b

−4 −3 −2 −1 1 2 3 4 5

2

6

24

Observe that

Γ(1) =

ˆ ∞

0

t0e−t dt

=
−1
et

∞

0

= 0− (−1) = 1
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and for positive integers n, integration by parts yields the recursive relation

Γ(n+ 1) =

ˆ ∞

0

tne−t dt

= −tne−t
∞

0

+ n

ˆ ∞

0

tn−1e−t dt

= 0 + nΓ(n)

and Euler had found his extension. That is, for each nonnegative integer n, he could now define the factorial by

n! = Γ(n+ 1) (13)

The gamma function shows up in numerous formulas and important identities. For example, we have the so-called
reflection formula

Γ(x) Γ(1− x) =
π

sin πx

This leads to the amusing identity

1

xΓ(x) Γ(1− x)
=

sin πx

πx

which relates the gamma function to the sinc function.
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About the same time James Stirling discovered an asymptotic formula for the factorial function. Although his
formula is only an approximation, these estimates do improve as n→∞ making the formula well suited for
estimating the factorial for large integers. In particular, the formula can be quite useful when studying the
asymptotics of a difficult sequence when an exact formula is unavailable.

Theorem. Stirling’s Formula

n! = Γ(n+ 1) ∼
(n

e

)n√
2πn (14)

Here the symbol f(n) ∼ g(n) means that limn→∞

f(n)

g(n)
= 1.

Example 5. Evaluate limn→∞

4nn!n!

(2n)!
.

First we try it without Stirling’s Formula. Doh!

On the other hand,

lim
n→∞

an = lim
n→∞

4nn!n!

(2n)!

=
2π√
2π

lim
n→∞

4n

1

(n

e

)n (n

e

)n n√
2n

( e

2n

)2n

=
√
π lim

n→∞

4n
√
n

1

e2n

en en
nn nn

n2n

1

22n

=
√
π lim

n→∞

√
n =∞

As an added benefit we see that an ∼
√
πn as n→∞. See Figure 1.

ax vs.

√
πx
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Figure 1: Sketch of the graph of
4xΓ(x+ 1)Γ(x+ 1)

Γ(2x+ 1)
versus

√
πx

What is arguably the most famous sequence in mathematics?


