
MTH 481 Lecture 17 - Wilf Rules Summer 2024

The Wilf Rules

Definition. We will use the symbol f
ogf←−→ {an}n≥0 to mean that mean that f

is the ordinary power series generating function for the sequence {an}n≥0. That
is, f =

∑

n anx
n. In a similar manner, we will use the symbols g

egf←−→ {bn}n≥0
and h

dgf←−→ {cn}n≥1 to mean that g is the exponential generating function of the
sequence {bn}n≥0 and h is the Dirichlet series generating function of the sequence
{cn}n≥1, respectively. Formally, we have

f
ogf←−→ {an}n≥0 =⇒ f(x) =

∑

n≥0
anx

n (1)

b
egf←−→ {bn}n≥0 =⇒ g(x) =

∑

n≥0
bn
xn

n!
(2)

h
dgf←−→ {cn}n≥1 =⇒ h(s) =

∑

n≥1

cn

ns
(3)

Now suppose that f
ogf←−→ {an}n≥0. What is the generating function for the

sequence {an+2}n≥0? We have

∑

n≥0
an+2x

n =
x2

x2

∑

n≥0
an+2x

n

=
1

x2

∑

n≥0
an+2x

n+2

=
f − a0 − a1x

x2

In other words,

f
ogf←−→ {an}n≥0 =⇒ f − a0 − a1x

x2
ogf←−→ {an+2}n≥0

This gives us our first rule.

Rule 1. If f
ogf←−→ {an}n≥0 and k is a positive integer, then

{an+k}n≥0
ogf←−→ f − a0 − a1x− a2x

2 − · · · ak−1xk−1
xk

(4)
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Example 1. Find a closed form for the generating function of the recursion
equation below. (See additional problem 1 on Homework Set 1.)

an+2 = −3an+1 − an, a0 = 1, a1 = −3 (5)

Let A
ogf←−→ {an}n≥0, then by Rule 1 we have

A(x)− 1− (−3)x
x2

= −3
(

A(x)− 1

x

)

− A(x)

Clearing fractions we obtain

A(x)− 1 + 3x = −3xA(x) + 3x− x2A(x)

Finally, we have

A(x) =
1

1 + 3x+ x2

Remark. It is worthwhile to make a few observations about the last example.

1. An easy computation confirms that A(0) = a0 = 1 and A′(0) = a1 = −3.
2. Compare the coefficients with the denominator of A(x) with the homogeneous

form of (5).

3. Suppose that B
ogf←−→ {bn}n≥0. Can we (quickly) recover the recursion

equation for the sequence? We illustrate in the next example.

Example 2. Suppose that B
ogf←−→ {bn}n≥0. Find the recursion equation for the

given sequence if

B(x) =
2− x

1− 4x+ x2

Observe that B(0) = 2 and B′(0) = 7. We claim that {bn}n≥0 satisfies the recusion

bn+2 − 4bn+1 + bn = 0, b0 = 2, b1 = 7 (6)

Rather than working with (6) and Rule 1 to recover the generating function B(x),
we appeal to technology to confirm.

Compare the coefficients of the Taylor series of B(x) here:
https://tinyurl.com/yas89n3g with the first few terms generated using the
recursion equation (6) here: https://tinyurl.com/y8psbjfn. You may need to
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scroll down the page to find the first few terms in the sequence. As an added
bonus, the second URL also produces the closed form solution of the recursion
equation (6). It is

bn =
βn+1 + β−n−1

2
, β = 2 +

√
3

Moving onto the next rule, what is the effect of multiplying a given sequence by

n? Once again suppose that f
ogf←−→ {an}n≥0. What is the generating function for

the sequence {nan}n≥0? We have

∑

n≥0
nanx

n = x
∑

n≥0
nanx

n−1 = xD

(

∑

n≥0
anx

n

)

= xD(f(x))

In other words,

f
ogf←−→ {an}n≥0 =⇒ (xD)f

ogf←−→ {nan}n≥0
Continuing, for a positive integer k, we have

f
ogf←−→ {an}n≥0 =⇒ (xD)kf

ogf←−→ {nkan}n≥0

This leads to a more general form which we summarize as

Rule 2. If f
ogf←−→ {an}n≥0 and P is a polynomial, then

{P (n)an}n≥0
ogf←−→ P (xD)f = P (θ)f (7)

Note: Recall that we introduced the θ operator when we discussed the Stirling
numbers.
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Example 3. Find the closed form of the generating functions for the sequences
given below.

a. Let f
ogf←−→ {n2}n≥0. Then

f(x) = (xD)2
1

1− x

= xD
x

(1− x)2

=
x(1 + x)

(1− x)3

as we have seen before.

b. Let {fn}n≥0 be the Fibonacci numbers. Then

{fn}n≥0
ogf←−→ F (x) = (1− x− x2)−1. So by Rule 2

G(x) =
∑

n≥0
gnx

n =
∑

n≥0
nfnx

n

= (xD)
1

1− x− x2

=
x(1 + 2x)

(1− x− x2)2

Using a CAS, it is easy to confirm that the Taylor series coefficients of G(x)
are

{gn} = {0, 1, 4, 9, 20, · · · }
= {0 · 1, 1 · 1, 2 · 2, 3 · 3, 4 · 5, 5 · 8, . . .}
= {0f0, 1f1, 2f2, 3f3, 4f4, 5f5, . . .}

as expected.

The next rule is simply a statement about the product of two generating
functions, which we discussed in section 2.1.

Rule 3. If f
ogf←−→ {an}n≥0 and g

ogf←−→ {bn}n≥0, then

fg
ogf←−→

{

n
∑

k=0

akbn−k

}

n≥0

(8)
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From Rule 3 we quickly general to powers of generating functions to produce

Rule 4. If f
ogf←−→ {an}n≥0 and k is a positive integer, then

fk ogf←−→
{

∑

n1+n2+···nk=n

an1
an2
· · · ank

}

n≥0

(9)

The derivation of the last rule is straightforward. See the text.

Rule 5. If f
ogf←−→ {an}n≥0, then

1

1− x
· f ogf←−→

{

n
∑

k=0

ak

}

n≥0

(10)

We make one additional rule that, for some reason, is missing from the Wilf list.

Rule 6. If f
ogf←−→ {an}n≥0 and let an = 0 for n < 0. Then for any positive

integer k,

xkf
ogf←−→ {an−k}n≥0 (11)
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We demonstrate the utility of the rules below.

Example 4.

Define δ00 = 1 and δk0 = 0 for k > 0. Notice that 1
ogf←−→ {δn0}n≥0. Now by Rule 5

we have

1

1− x
· 1 ogf←−→

{

n
∑

j=0

δj0

}

n

= {δ00}n = {1}n

Continuing, we have

1

(1− x)2
ogf←−→

{

n
∑

j=0

1

}

n

= {n+ 1}n

as we saw in class. Finally

1

(1− x)3
ogf←−→

{

n
∑

j=0

(j + 1)

}

n

=

{

(n+ 1)(n+ 2)

2

}

n

Compare with Example 3.

Example 5. How many ways can a semester of n days be created so that there
is one holiday during the first part of the semester and two holidays during the
second part? Let sn be the number of ways to do this and let k be the number of
days in the first part. Clearly, we must have 1 ≤ k ≤ n− 2. Now for a fixed k

there are
(

k

1

)

= k ways to choose a holiday during the first part of the semester

and
(

n−k
2

)

to choose the pair of holidays during the second part. So by the

product rule, there are k
(

n−k
2

)

ways to create the semester. Summing over all
values of k yields

sn =
n−2
∑

k=1

k

(

n− k

2

)

(12)

ways to create a semester of n days under the given conditions.

Equation (12) appears to be a satisfactory answer, but it does not give sn in a
closed form, if one even exists. The appearance of a convolution in (12) strongly
suggests that it might helpful to look at products of generating functions. So let
an = n and bn =

(

n

2

)

and let S(x) =
∑

n≥3 snx
n. Also, let A(x) =

∑

n anx
n and

B(x) =
∑

n bnx
n. We leave it as an exercise to show that S(x) = A(x)B(x).
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Now recall the binomial formulas discussed earlier in the semester.
∑

n

(

n

k

)

=
xk

(1− x)k+1
(13)

It follows that

A(x) =
∑

n

anx
n =

∑

n

(

n

1

)

xn =
x

(1− x)2
(14)

B(x) =
∑

n

bnx
n =

∑

n

(

n

2

)

xn =
x2

(1− x)3
(15)

We have

S(x) = A(x)B(x) =
x3

(1− x)5

It follows that

sn = [xn]
x3

(1− x)5
= [xn]

1

x

x4

(1− x)5

= [xn+1]
∑

n

(

n

4

)

xn =

(

n+ 1

4

)

In other words,

n−2
∑

k=1

k

(

n− k

2

)

=

(

n+ 1

4

)

and we have our closed form.

We finish this section with a beautiful theorem about the general nature of the
recursion equation for rational generating functions.

Theorem 6. Let p and q be polynomials which are relatively prime and with
0 < k = deg p < deg q = m. Suppose also that

q(x) =
m
∑

j=0

qjx
j, with q0 6= 0

Finally, let

f(x) =
p(x)

q(x)

ogf←−→ {fn}n≥0
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Then for all n ≥ 0, the sequence of coefficients fn satisfies the recursion

q0fn+m+ q1fn+m−1 + · · ·+ qmfn = 0 (16)

with initial conditions given by

fj =
f (j)(0)

j!
, 0 ≤ j ≤ m− 1 (17)

Here f (j)(0) is the jth derivative of f evaluated at zero.

Proof: Observe that for n ≥ 0, we have that [xn+m]p(x) = 0 since p is a
polynomial with deg p < m. It follows that

0 = [xn+m]p(x) = [xn+m]f(x)q(x) = [xn+m]f(x)
m
∑

j=0

qjx
j

=
m
∑

j=0

qj[x
n+m]xjf(x) =

m
∑

j=0

qj[x
n+m−j]f(x)

=
m
∑

j=0

qjfn+m−j

which is (16). Notice that (17) follows by Taylor’s Theorem. �
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Example 7. Let G
ogf←−→ {gn}n where

G(x) =
1

1− ax− bx2 − cx3
, c 6= 0

Then by Theorem 6, the sequence of coefficients gn satisfies the recursion

gn+3 = agn+2 + bgn+1 + cgn, n ≥ 0 (18)

with initial conditions

g0 = G(0) = 1

g1 = G′(0) = a

g2 =
G′′(0)

2!
=

2(a2 + b)

2


