
MTH 481 Lecture 13 - Formal Power Series

Formal Power Series

Definition 1. A formal power series is an expression of the form

a0 + a1x+ a2x
2 + · · · =

∑

n≥0

anx
n

The sequence {an}n≥0 is called the sequence of coefficients. Two series are
equal if they have the same sequence of coefficients.

Now let C[[x]] denote the space of all formal power series. That is, let

C[[x]] =

{

∑

n≥0

anx
n | an ∈ C for n ≥ 0

}

It turns out that C[[x]] is an algebra, the algebra of formal power series, under the
operations of addition, scalar multiplication, and multiplication defined below.

∑

n≥0

anx
n +

∑

n≥0

bnx
n =

∑

n≥0

(an + bn)x
n,(1)

c
∑

n≥0

anx
n =

∑

n≥0

canx
n, c ∈ C(2)

∑

n≥0

anx
n
∑

n≥0

bnx
n =

∑

n≥0

cnx
n, where cn =

n
∑

k=0

akbn−k(3)

We observe that these series do converge at x = 0. In particular, if

f(x)
ogf
←−→ {an}n≥0 then f(0) = a0. In general however, we do not concern

ourselves with notions of convergence (of real or complex numbers), hence the
term formal. (Note: However, we will introduce an elementary notion of
convergence within C[[x]]. See Definition 4 below.)

Formal power series are primarily a means of studying the sequences {an}n≥0,
called the sequence of coefficients. To that end we introduce the linear functional,
[xn]

[xn] : C[[x]]→ C

1



MTH 481 Lecture 13 - Formal Power Series

defined by the rule

[xn]
∑

n≥0

anx
n = an

for any integer n ≥ 0. The operator is clearly linear since by (1) and (2) we have

[xn]

(

∑

n≥0

anx
n +

∑

n≥0

bnx
n

)

= [xn]
∑

n≥0

(an + bn)x
n

= an + bn = [xn]
∑

n≥0

anx
n + [xn]

∑

n≥0

bnx
n

and

[xn]c
∑

n≥0

anx
n = [xn]

∑

n≥0

canx
n

= can = c[xn]
∑

n≥0

anx
n

We look at some examples of the usage of this operator below.

Now consider the following product (of formal power series).

(1− x)
∑

n≥0

xn =
∑

n≥0

xn −
∑

n≥0

xn+1

= 1 +
∑

n≥1

xn −
∑

n≥0

xn+1

= 1 +
∑

n≥0

xn+1 −
∑

n≥0

xn+1

= 1

Because of this result, it seems reasonable to say that
∑

n x
n and 1− x are

reciprocals. We have the following proposition.

Proposition 2. A formal power series f(x) =
∑

n≥0 anx
n has a reciprocal, which

we will denote by 1/f(x), if and only if a0 6= 0. When it exists, 1/f(x) is unique.

For a proof, see the Wilf text.
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We also need to discuss the inverse of a formal power series. That is, if f is a
formal power series, under what conditions does there exists another (formal)
power series such that

(4) f(g(x)) = g(f(x)) = x

Now suppose that f(x) =
∑

n≥0 fnx
n and g(x) =

∑

n≥0 gnx
n. It seems reasonable

to define

f(g(x)) =
∑

n≥0

fn(g(x))
n =?

∑

n≥0

bnx
n

But what are the bns? Specifically, what is b0? It doesn’t to long to recognize that

b0 = f0 + f1g0 + f2g
2
0 + · · ·

That is, to determine that value of b0 requires an infinite process, unless f
happens to be a polynomial. On the other hand, if g0 = 0 then each of the
coefficients bn can be computed in a finite number of steps. We make the
following definition.

(5) The composition f(g(x)) is defined if and only if f is a polynomial or g0 = 0.

Proposition 3. Let f and g be formal power series that satisfy (4). Then f1 6= 0
and g1 6= 0.

For a proof see the Wilf text.

It turns out that one can introduce a topology on C[[x]]. However, such a
discussion will take us too far away from our main focus. Instead, it will suffice to
introduce an elementary notion of convergence in C[[x]].

Definition 4. Let {fn(x)}n≥0 be a sequence of formal power series in C[[x]]. We
say that fn(x) converges to f(x) =

∑

n anx
n ∈ C[[x]] if the sequence of

coefficients

[xk]f1(x), [xk]f2(x), [xk]f3(x), . . .
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eventually stabilizes to the value ak, and that this result holds for all k. In this
case, we write

(6) lim
n→∞

fn(x) = f(x) or fn(x)→ f(x) as n→∞

Otherwise we say that the sequence diverges or the limit does not exist. Note:
We often omit the symbol n→∞ when using the latter notation.

As a trivial but important example, consider the formal power series
A(x) =

∑

n≥0 anx
n. Now define the (partial sum) sequence sk(x) =

∑k
j=0 ajx

j.
Then sk(x)→ A(x) since for all n

[xn]s0(x), [xn]s1(x), [xn]s2(x), . . . , [xn]sn(x), [xn]sn+1(x), [xn]sn+2(x), . . .

= 0, 0, 0, . . . , an, an, an, . . .

as expected.

There is an equivalent notion of convergence. Let f(x) =
∑

n anx
n ∈ C[[x]] and

define the degree of f(x), written as deg(f(x)), to be the smallest n such that
an 6= 0. If f(x) = 0 define deg(f(x)) =∞. We leave it as an exercise to state and
prove an equivalent definition of convergence using degree (see Exercise 3).

Theorem 5. (Sagan) Let {fk}k≥0 be a sequence of formal power series. Then
∑

k≥0 fk(x) exists (as a formal power series) if and only if limk→∞ deg(fk(x)) =∞.

Proof: Suppose that {fk(x)}k≥0 ⊂ C[[x]] and let sk(x) =
∑k

j=0 fj(x). Since
∑

k≥0 fk(x) exists, there is an integer K = K(n) such that
[xn]sK(x), [xn]sK+1(x), [xn]sK+2(x), . . . is constant. In other words, for all
positive m

0 = [xn]sK+m(x)− [xn]sK(x)

= [xn]
K+m
∑

j=K+1

fj(x)

Thus, deg(fk(x)) > n for all k ≥ K. Now let n→∞ and the result follows. We
leave the reverse implication as an exercise. �

We are now in a position to give a more formal treatment of the composition of
two formal power series (see (5)).
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Corollary 6. Let f(x), g(x) ∈ C[[x]]. Then f(g(x)) ∈ C[[x]] if and only if f(x) is
a polynomial or g(0) = 0.

Proof: We leave the forward direction as an exercise. For the reverse implication,
if f(x) is a polynomial then the result follows because C[[x]] is an algebra under
the algebraic operations defined in (1)-(3). On the other hand, suppose that
f(x) =

∑

n≥0 fnx
n and g(0) = 0. Now let Fn(x) = fn(g(x))

n and observe that
deg(Fn(x)) ≥ n. So by the previous theorem,

�

f(g(x)) =
∑

n≥0

fn(g(x))
n =

∑

n≥0

Fn(x) ∈ C[[x]]

Theorem 7. Let {fk(x)}k≥0 ⊂ C[[x]] and suppose that fk(0) = 0 for each k.
Then

∏

k≥0(1 + fk(x)) ∈ C[[x]] if and only if limk→∞ deg(fk(x)) =∞.

As an immediate consequence we have

Corollary 8.
∏

k≥1(1 + xk) ∈ C[[x]]

Calculus of Formal Power Series

Once again let f(x) =
∑

n≥0 anx
n. Then we define f ′(x) to be the formal power

series f ′(x) =
∑

n≥1 nanx
n−1. It turns out that the usual derivative rules such as

the sum, product, and quotient rules hold for formal power series. The interested
reader is encouraged to explore the Wilf text.

We conclude this section with several examples of extractionator usage.

Example 9. Let A(x)
ogf
←−→ {an}n≥0 and let k be a positive integer.

a. Let g(x) = 2 + 3x2 − x7. Then [xn]g(x) = 0 except

[x0]g(x) = 2, [x2]g(x) = 3, [x7]g(x) = −1

b. Let G(x) =
∑

n≥0 gnx
2n+1. Then

[x2n]G(x) = 0

and

[x2n+1]G(x) = gn
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c. [xn]
1

1− x
= 1 since

1

1− x
= 1 + x+ x2 + x3 + · · · =

∑

n≥0

xn

d. [xn]
1

1 + x
= (−1)n since

1

1 + x
= 1− x+ x2 − x3 + · · · =

∑

n≥0

(−1)nxn

e. [xn]xkA(x) = [xn−k]A(x) = an−k since

xkA(x) = xk(a0 + a1x+ a2x
2 + a3x

3 + · · · )

= a0x
k + a1x

k+1 + a2x
k+2 + a3x

k+3 · · ·

Notice that the coefficient subscripts are k units less than the corresponding
exponent, as we claimed.
By a similar argument

[xn]
1

xk
A(x) = [xn+k]A(x) = an+k

f. [xn]
A(x)

1− x
=

n
∑

k=0

ak since

A(x)

1− x
=
∑

n≥0

n
∑

k=0

akx
n

For example, let f(x) = (1− x− x2)−1. Then

f(x)

1− x
=

1

(1− x)(1− x− x2)

= 1 + (1 + 1)x+ (1 + 1 + 2)x2 + (1 + 1 + 2 + 3)x3 + (1 + 1 + 2 + 3 + 5)x4 + · · ·

= 1 + 2x+ 4x2 + 7x3 + 12x4 + 20x5 + 33x6 + 54x7 + 88x8

so that [x6]f(x)(1− x)−1 = 1 + 1 + 2 + 3 + 5 + 8 + 13 = 33.
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Example 10.

a.

[xn]
2x

(1− x)8
= 2[xn]

x6

x6
x

(1− x)8

= 2[xn+6]
x7

(1− x)8

= 2[xn+6]
∑

m

(

m

7

)

xm

= 2

(

n+ 6

7

)

b. Let G(x) =
x

(1 + 2x)4
. Then

[xn]G(x) = [xn]
(−2x)2

(−2x)2
−2

−2

x

(1− (−2x))4

= [xn+2]
−1

8

(−2x)3

(1− (−2x))4

=
−1

8
[xn+2]

∑

m

(

m

3

)

(−2x)m

=
−1

8
[xn+2]

∑

m

(

m

3

)

(−2)mxm

=
−1

8

(

n+ 2

3

)

(−2)n+2

The first 9 terms of this sequence are

0,1,−8, 40,−160, 560,−1792, 5376,−15360

and the first 9 terms of the Taylor’s expansion of G(x) are

x − 8x2 + 40x3 − 160x4 + 560x5 − 1792x6 + 5376x7 − 15360x8

as we would expect.
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Exercises

1. Prove the reverse implication in Theorem 5.

2. Prove the forward direction of Corollary 6. That is, suppose that
f(x), g(x) ∈ C[[x]]. If f(g(x)) ∈ C[[x]] then f(x) is a polynomial or g(0) = 0.
Hint: If f(x) is not a polynomial and g(0) 6= 0, show that f(g(x)) /∈ C[[x]].

3. State a definition of convergence in C[[x]] in terms of the degree operator.
Show that this definition is equivalent to the one given in Definition 4.

4. Let {bn}n≥1 be a sequence of nonnegative integers. Prove that
∏

n≥1(1 + xn)bn ∈ C[[x]].
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