7.4 Partial Fractions

Consider the following integral.

(1)
$$\int \frac{13 - 2x}{x^2 - x - 2} \, dx$$

How might we evaluate this? Suppose that, by some good luck, we knew that

(2)
$$\frac{13 - 2x}{x^2 - x - 2} = \frac{3}{x - 2} - \frac{5}{x + 1}$$

We could then evaluate (1) as follows

$$\int \frac{13 - 2x}{x^2 - x - 2} dx = 3 \int \frac{1}{x - 2} dx - 5 \int \frac{1}{x + 1} dx$$
$$= 3 \ln|x - 2| - 5 \ln|x + 1| + C$$

The right-hand side of (2) is called the "partial fraction" decomposition of

$$\frac{13-2x}{x^2-x-2}$$

General Method

In this section we will learn to decompose rational expressions into simpler **partial fractions**, as we saw in (2). We will also discuss a few shortcuts.

To decompose the rational function f(x)/d(x) as a sum of partial fractions, we need two things.

1. f(x)/d(x) must be a proper fraction, i.e., deg(f) < deg(d). If not, eliminate any common factors and use long division to rewrite the fraction as a quotient polynomial plus the remainder polynomial over the (possibly) new divisor polynomial.

(3)
$$\frac{f(x)}{d(x)} = q(x) + \frac{r(x)}{d_1(x)}$$

2. We must be able to factor the (new) divisor.

Now suppose that f(x)/d(x) is a proper fraction and the factors of d(x) are known. We proceed as follows.

1. Suppose that x-a is a factor of d(x) and $(x-a)^m$ is the highest power of x-a that divides d(x). Then we assign the following to the sum of partial fractions

$$\frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \dots + \frac{A_m}{(x-a)^m}$$

We must repeat the above procedure for each of the linear factors of d(x).

2. Now suppose that $x^2 + bx + c$ is an (irreducible) quadratic factor of d(x) and that $(x^2 + bx + c)^n$ is the highest power of $x^2 + bx + c$ that divides d(x). Then, as above, we assign the following to the sum of partial fractions.

$$\frac{B_1x + C_1}{x^2 + bx + c} + \frac{B_2x + C_2}{(x^2 + bx + c)^2} + \dots + \frac{B_nx + C_n}{(x^2 + bx + c)^n}$$

Once again, we repeat the above procedure for each of the quadratic factors of d(x).

3. Now we sum all of the partial fractions from steps 1 and 2 and equate them to f(x)/d(x). Now we clear the denominators and solve the resulting (linear) system of equations by collecting like powered terms and equating them to the corresponding powers in the polynomial f(x).

Example 1. Partial Fraction Decomposition

Find a partial fraction decomposition of each of the following.

a.
$$\frac{13-2x}{x^2-x-2}$$

So according to step 1 above, we must rewrite this as

$$\frac{13 - 2x}{(x - 2)(x + 1)} = \frac{A}{x - 2} + \frac{B}{x + 1}$$

Now we clear the denominators, equate like coefficients, and solve for A and B. Thus

$$13 - 2x = A(x+1) + B(x-2)$$

$$\implies 13 = A - 2B$$

$$-2x = (A+B)x \quad \text{or} \quad -2 = A+B$$

It is easy to solve this 2 by 2 system to conclude that A=3 and B=-5, as we saw above.

b.
$$\frac{5x^2 - 3x - 2}{(x - 5)(x + 1)^2}$$

The candidate decomposition is

$$\frac{5x^2 - 3x - 2}{(x - 5)(x + 1)^2} = \frac{A}{x + 1} + \frac{B}{(x + 1)^2} + \frac{C}{x - 5}$$

Clearing denominators yields

$$5x^{2} - 3x - 2 = A(x+1)(x-5) + B(x-5) + C(x+1)^{2}$$
$$= Ax^{2} - 4Ax - 5A + Bx - 5B + Cx^{2} + 2Cx + C$$

Now equating like terms leads to the 3 by 3 system

$$-2 = -5A - 5B + C$$
$$-3 = -4A + B + 2C$$
$$5 = A + C$$

The solution of this system is $A=2,\ B=-1,\ {\rm and}\ C=3.$ In other words,

$$\frac{5x^2 - 3x - 2}{(x - 5)(x + 1)^2} = \frac{2}{x + 1} + \frac{-1}{(x + 1)^2} + \frac{3}{x - 5}$$

Now we can easily evaluate the following integral.

$$\int \frac{5x^2 - 3x - 2}{(x - 5)(x + 1)^2} dx = 2 \int \frac{1}{x + 1} dx$$
$$- \int \frac{1}{(x + 1)^2} dx + 3 \int \frac{1}{x - 5} dx$$
$$= 2 \ln|x + 1| + \frac{1}{x + 1} + 3 \ln|x - 5| + C$$

c.
$$\frac{x^2 - 4x - 12}{(x+5)(x^2 + 3x + 1)}$$

$$\frac{x^2 - 4x - 12}{(x+5)(x^2 + 3x + 1)} = \frac{A}{x+5} + \frac{Bx + C}{x^2 + 3x + 1}$$

Thus

$$x^{2} - 4x - 12 = A(x^{2} + 3x + 1) + (x + 5)(Bx + C)$$
$$= Ax^{2} + 3Ax + A + Bx^{2} + 5Bx + Cx + 5C$$

Equating like terms leads to the 3 by 3 system

$$-4 = 3A + 5B + C$$
$$-12 = A + 5C$$
$$1 = A + B$$

which has the solution A=3, B=-2, and C=-3. Or

$$\frac{x^2 - 4x - 12}{(x+5)(x^2 + 3x + 1)} = \frac{3}{x+5} - \frac{2x+3}{x^2 + 3x + 1}$$

We now leave it as an easy exercise to evaluate

$$\int \frac{x^2 - 4x - 12}{(x+5)(x^2 + 3x + 1)} \, dx$$

Other Methods

As we saw earlier, partial fraction decomposition can be rather tedious. Consider the following example.

Example 2. Assigning Numerical Values

Find the partial fraction decomposition of

$$\frac{2x^4 - 11x^3 - 13x^2 - 97x + 71}{(x-5)(x-1)(x+3)(x^2+2)}$$

Let $f(x) = 2x^4 - 11x^3 - 13x^2 - 97x + 71$. Now follow steps 1 and 2 on page 3 to obtain.

$$\frac{2x^4 - 11x^3 - 13x^2 - 97x + 71}{(x - 5)(x - 1)(x + 3)(x^2 + 2)}$$

$$= \frac{A}{x - 1} + \frac{B}{x + 3} + \frac{C}{x - 5} + \frac{Dx + E}{x^2 + 2}$$

Clearing fractions yields

$$f(x) = 2x^{4} - 11x^{3} - 13x^{2} - 97x + 71$$

$$= A(x+3)(x-5)(x^{2}+2)$$

$$+ B(x-1)(x-5)(x^{2}+2)$$

$$+ C(x-1)(x+3)(x^{2}+2)$$

$$+ (Dx+E)(x-1)(x+3)(x-5)$$

Now substitute several convenient values for x and solve the resulting equations. For example, if x=1 we have

$$-48 = f(1)$$

$$= A(4)(-4)(3) + B \cdot 0 + C \cdot 0 + (Dx + E) \cdot 0$$

$$\Longrightarrow A = 1$$

If x = -3 we have

$$704 = f(-3)$$

$$= B(-4)(-8)(11)$$

$$\Longrightarrow B = 2$$

If x = 5 then

$$-864 = f(5)$$
$$= C(4)(8)(27)$$
$$\Longrightarrow C = -1$$

Now A, B, and C are known. If x = 0 then

$$71 = f(0)$$

$$= 1(-30) + 2(10) - 1(-6) + E(15)$$

$$\implies E = 5$$

Finally, let x = -1. Then

$$168 = f(-1)$$

$$= 1(-36) + 2(36) - 1(-12) + (5 - D)(24)$$

$$\implies D = 0$$

It follows that

$$\frac{2x^4 - 11x^3 - 13x^2 - 97x + 71}{(x - 5)(x - 1)(x + 3)(x^2 + 2)}$$

$$= \frac{1}{x - 1} + \frac{2}{x + 3} + \frac{-1}{x - 5} + \frac{5}{x^2 + 2}$$

It turns out that the method employed above can be further simplified if the divisor, d(x), has only linear factors.

Example 3. Heaviside "Cover-up" Method

Rewrite the following as a sum of partial fractions.

$$\frac{7x^3 + 12x^2 - 53x - 14}{(x-5)(x-1)(x+2)(x+3)}$$

We proceed as usual, but we don't clear the denominators.

$$\frac{7x^3 + 12x^2 - 53x - 14}{(x - 5)(x - 1)(x + 2)(x + 3)}$$

$$= \frac{A}{x - 5} + \frac{B}{x - 1} + \frac{C}{x + 2} + \frac{D}{x + 3}$$

Now if we multiply the above equation by x-5 we get

$$\frac{7x^3 + 12x^2 - 53x - 14}{(x-1)(x+2)(x+3)}$$

$$= A + \frac{B(x-5)}{x-1} + \frac{C(x-5)}{x+2} + \frac{D(x-5)}{x+3}$$

Now substitute x = 5 into the result to get

$$\frac{7(5)^3 + 12(5)^2 - 53(5) - 14}{(5-1)(5+2)(5+3)} = A + 0 + 0 + 0$$
$$\implies A = 4$$

We can accomplish the same thing by "covering-up" the factor x-5 on the left-hand side and ignoring the second, third and fourth terms on the right-hand side. Let's use this technique to find B, C, and D.

To find B we must "cover" the x-1 factor on the left-hand side. Thus

$$\frac{7x^3 + 12x^2 - 53x - 14}{(x-5)\underbrace{(x-1)}_{\text{Cover}}(x+2)(x+3)}$$

$$= \underbrace{\frac{A}{x-5}}_{\text{Cover}} + \underbrace{\frac{B}{x-1}}_{\text{Cover}} + \underbrace{\frac{C}{x+2}}_{\text{Cover}} + \underbrace{\frac{D}{x+3}}_{\text{Cover}}$$

Now let x = 1 to find B.

$$B = \frac{7(1)^3 + 12(1)^2 - 53(1) - 14}{((1) - 5)(x - 1)((1) + 2)((1) + 3)}$$

$$= 1$$

To find C we let x = -2 and cover the x + 2 factor.

$$\frac{7(-2)^3 + 12(-2)^2 - 53(-2) - 14}{((-2) - 5)((-2) - 1)\underbrace{(x + 2)((2) + 3)}_{\text{Cover}}$$

$$= \underbrace{\frac{A}{x-5}}_{\text{Cover}} + \underbrace{\frac{B}{x-1}}_{\text{Cover}} + \underbrace{\frac{C}{x+2}}_{\text{Cover}} + \underbrace{\frac{D}{x+3}}_{\text{Cover}}$$

$$\implies C = 4$$

Finally, let x=-3 and cover the x+3 factor.

$$\frac{7(-3)^3 + 12(-3)^2 - 53(-3) - 14}{((-3) - 5)((-3) - 1)((-3) + 2)\underbrace{(x + 3)}_{\text{Cover}}}$$

$$= \underbrace{\frac{A}{x - 5} + \underbrace{\frac{B}{x - 1}}_{\text{Cover}} + \underbrace{\frac{C}{x + 2}}_{\text{Cover}} + \underbrace{\frac{D}{x + 3}}_{\text{Cover}}$$

$$\implies D = -2$$

It follows that

$$\frac{7x^3 + 12x^2 - 53x - 14}{(x - 5)(x - 1)(x + 2)(x + 3)}$$

$$= \frac{4}{x - 5} + \frac{1}{x - 1} + \frac{4}{x + 2} + \frac{-2}{x + 3}$$

Example 4. Evaluate

$$\int \frac{7x^3 + 12x^2 - 53x - 14}{(x-5)(x-1)(x+2)(x+3)} dx$$

$$\int \frac{7x^3 + 12x^2 - 53x - 14}{(x - 5)(x - 1)(x + 2)(x + 3)} dx$$

$$= \int \frac{4}{x - 5} dx + \int \frac{1}{x - 1} dx + \int \frac{4}{x + 2} dx + \int \frac{-2}{x + 3} dx$$

$$= 4 \ln|x - 5| + \ln|x - 1| + 4 \ln|x + 2| - 2 \ln|x + 3| + C$$