
MTH 481 Inversions

Let π : [n] → [n] be a bijection and for 1 ≤ j ≤ n, let πj = π(j). Then π ∈ Sn, that is, π is a permutation on n
elements and π is usually represented in one of the following ways.

First, we have the usual two-line representation.

π =

(
1 2 3 · · · n− 1 n
π1 π2 π3 · · · πn−1 πn

)

Using only the second line in the above representation we immediately obtain the one-line representation. That is,

π = (π1 π2 π3 · · · πn−1 πn)

Another common representation of a permutation is called cycle notation, which is more easily explained with an
example.

Example 1. Rewrite the permutations below using cycle notation.

a. π = (2 1 4 6 3 7 5) ∈ S7

Then π consists of two cycles c1 = (12) and c2 = (34675) and is written

π = (12)(34675) = (34675)(12)

The cycle c1 is called a transposition since it has length two.

b. δ = (4 2 1 3) ∈ S4 so that
δ = (143)(2) = (143)

Notice that 2 is a fixed point since π(2) = 2 and it is customary to omit fixed points when representing
permutations using cycle notation. This can be confusing at times, so we will only omit fixed points when there
is a good reason to do so.

c. Finally, let γ = (145)(26)(3) ∈ S6. Then using two-line notation we would write

γ =

(
1 2 3 4 5 6
4 6 3 5 1 2

)

To get the one-line version, we simply ignore the first row.

γ = (4 6 3 5 1 2)

Remark. The various notations have advantages. For our current task, the one-line notation will make it easier to
recognize runs and inversions. Cycle notation will be the focus of section 6.1 when we introduce Stirling Numbers
of the First Kind, i.e., cycle numbers.
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One can also represent permutations using the so-called inversion table which we define below.

Definition 2. Let π = (π1 π2 π3 · · · πn−1 πn) ∈ Sn. Suppose that for some i < j we have πi > πj . Then the pair
(πi, πj) is called an inversion (pair) of π.

Now let E(π) denote the set of all inversion pairs for the permutation π. We can construct an inversion table
πI = b1b2 · · · bn of the permutation π by letting bj to count the number of inversion pairs (in E(π)) such that j is
the second component. It is easy to see that 0 ≤ bj ≤ n− j. In particular, the last entry in the table must be 0
since (j, n) /∈ E(π) for any j.

Finally, define the inversion number i(π) of π, by the rule

i(π) = |E(π)| =
n∑

k=1

bk (1)

For example, the pairs (6, 3) and (5, 2) are two 2 of the 11 inversions of the permutation π = (4 6 3 5 1 2) . Can
you identify the other 9? Now the inversion table πI = 442010 since

E(π) = {(4, 3), (4, 1), (4, 2), (6, 3), (6, 5), (6, 1), (6, 2), (3, 1), (3, 2), (5, 1), (5, 2)}

It turns out the we can recover the original permutation from its inversion table.

Example 3. Let δI = 2112010. Let’s try to recover the permutation δ. We begin with 7.

7

Now since 6 is out of order once, we must have

7 6

Notice that 5 never appears as the second entry in E(δ), so it must preceed 6 and 7.

5 7 6

Continuing

5 7 4 6

5 3 7 4 6

5 2 3 7 4 6

5 2 1 3 7 4 6

We leave it as an exercise to confirm that the inversion table for δ = (5 2 1 3 7 4 6) is δI = 2112010.

It turns out that there is a interesting relationship between inversions and inverses. Given a permutation, we can
quickly construct its inverse by using the two-line notation. For example, let π = (5 3 1 2 6 4) ∈ S6 and switch back
to the two-line format.

(
1 2 3 4 5 6
5 3 1 2 6 4

)

Now swap the rows

(
5 3 1 2 6 4
1 2 3 4 5 6

)
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Finally, reorder the columns using the top row to obtain
(
1 2 3 4 5 6
3 4 2 6 1 5

)

It is easy to see that the π−1 = (3 4 2 6 1 5). Now observe that πI = 420010 and π−1
I = 221200 so that both π and

π−1 have the same number of inversions. In other words, i(π) = i(π−1).

This fact was first proved by H. A. Rothe in 1800. Let π = (π1 π2 · · · πn) ∈ Sn and construct an n× n grid P as
follows. Place a dot in column k of row j whenever πj = k. Then place × signs in all squares that have dots below
and to the right of the given square. We claim that bj is equal to the number of × signs in column j and the total
number of inversions is given by the total number of × signs. Notice that the transpose of P represents π−1 and
the placement of the × signs conforms to the procedure described above.

We illustrate with an example. Once again let π = (5 3 1 2 6 4). Since π1 = 5 we place a dot in the fifth column of
the first row. Continuing, we place a dot in the third column of the second row, and so on. Now place × signs as
prescribed. Figure 1 shows the resulting grid and its transpose.
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Figure 1: Inversion grid P (π) and its transpose for the permutation π

Now let In(k) denote the number of permutations on n elements with exactly k inversions. We note that In(0) = 1
since the identity is the only permutation with 0 inversions. It is not too hard to see that In(1) = n− 1. We also
have a symmetric property

In

((
n

2

)

− k

)

= In(k) (2)

Proposition 4. Let I0(0) = 1 and for n ∈ N and k < 0, let In(k) = 0. Then for n > 0 we have

In(k) =
n−1∑

j=0

In−1(k − j) (3)

Proof: Let π = (π1 π2 · · · πn−1) ∈ Sn−1 and let π(j) denote the n-permutation

(π1 π2 · · · n
︸︷︷︸

jth slot

· · · πn−1)

It is easy to see that i(π(j)) = i(π) + n− j. Now suppose that π ∈ Sn−1 has m inversions with
Max(0, k + 1− n) ≤ m ≤ k. Then i

(
π(m+n−k)

)
= m+ n− (m+ n− k) = k. It follows that

In(k) =

k∑

m=Max(0,k+1−n)

In−1(m)

=

k∑

m=k+1−n

In−1(m)
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n
k

0 1 2 3 4 5 6 7 8 9 10 11

1 1 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0
3 1 2 2 1 0 0 0 0 0 0 0 0
4 1 3 5 6 5 3 1 0 0 0 0 0
5 1 4 9 15 20 22 20 15 9 4 1 0
6 1 5 14 29 49 71 90 101 101 90 71 49
7 1 6 20 49 98 169 259 359 455 531 573 573
8 1 7 27 76 174 343 602 961 1415 1940 2493 3017

Table 1: Permutations on [n] with k inversions

since In−1(m) = 0 whenever m < 0. Now after the substitution m = k − j, the last expression is equal to the
right-hand side of (3). �

With the help of (4), we can now generate a Pascal type triangle for In(k). Table 1 displays the first 8 rows of such
a table. Notice that we have the recursion formula below, which is valid for k < n (below the zig-zag border).

In(k) = In(k − 1) + In−1(k), k < n (4)

We list just two of the numerous formulas involving inversion numbers.

In(2) =

(
n

2

)

−

(
n

0

)

, n ≥ 2

In(3) =

(
n+ 1

3

)

−

(
n

1

)

, n ≥ 3

We wish to define another important property associated with permutations and inversion numbers, parity.

Definition 5. Let π ∈ Sn be a permutation. Define the map sgn: Sn −→ {−1, 1} by the rule sgn(π) = (−1)i(π).
Then π is called an even permutation if sgn(π) = 1 and an odd permutation if sgn(π) = −1. In other words, even
permutations have an even number of inversions and odd permutations have an odd number of inversions. We shall
call sgn the parity operator.

Theorem 6. Let α, β ∈ Sn be permutations and let sgn be parity operator defined above. Then

sgn(αβ) = sgn(α) sgn(β)

In other words, the sgn operator is multiplicative.

Example 7. Let α, β ∈ S7, with α = (24156)(37) and β = (1)(2)(35)(4)(6)(7) = (35). Notice that we are using
cycle notation and, at least in this example, we are suppressing the fixed points of β. We leave it as an exercise to
confirm that i(α) = 13 and i(β) = 3. Hence α and β are odd permutations. On the other hand,

αβ = (5 4 6 1 7 2 3)

so that

E(αβ) = {54, 51, 52, 53, 41, 42, 43, 61, 62, 63, 72, 73}

and

i(αβ) = 12

In other words, αβ is even, as expected.
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Generating Functions

Now for a fixed n, let Jn(x) denote the ordinary power series generating function for {In(k)}k≥0. That is, let
Jn(x) =

∑

k≥0 In(k)x
k. Then by Proposition 4,

Jn(x) =
∑

k≥0

In(k)x
k

=
∑

k≥0

n−1∑

j=0

In−1(k − j)xk

=

n−1∑

j=0

∑

k≥0

In−1(k − j)xk−j xj

= Jn−1(x)

n−1∑

j=0

xj

In other words, Jn(x) satisfies the recursion equation

Jn(x) = (1 + x+ x2 + · · ·+ xn−1)Jn−1(x)

Now since J1(x) = 1, we have shown

Theorem 8.

Jn(x) = (1 + x+ x2 + · · ·+ xn−1) · · · (1 + x)(1) (5)

=
(1− xn)(1− xn−1) · · · (1− x2)(1− x)

(1− x)n
(6)
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Exercises

1. Let π = (146)(23)(57) ∈ S7.

(a) Rewrite π using one-line notation and find the inversion table for π. Hint: It might be easier to convert
from cycle notation to two-line notation first.

(b) Find the inversion table for π−1. Also, confirm that i(π) = i(π−1).

2. Let σ = (5 4 2 3 1). Find the set of inversions of σ, E(σ). Also, compute the inversion grid P (σ) (see
Figure 1). Explain why the grid construction works.

3. Let δI = 4102110 ∈ I7 be an inversion table for some δ ∈ S7. Find δ.

4. Let π = (π1 π2 · · · πn) ∈ Sn be a permutation and let E(π) be the set of its inversions.

(a) Prove that E(π) is transitive. That is, prove that if (a, b) and (b, c) are in E(π), then (a, c) ∈ E(π).

(b) Conversely, let E be any transitive subset of T = {(x, y) : 1 ≤ y < x ≤ n; x, y ∈ [n]} whose complement
Ec = T \E is also transitive. Prove that there is a permutation π such that E(π) = E.

5. Let π ∈ Sn and let πI = b1b2 . . . bn be its inversion table. Now suppose that σI = b′1b
′
2 . . . b

′
n where

b′j = n− j − bj . Find σ.

6. Prove the symmetric property

In

((
n

2

)

− k

)

= In(k) (7)

7. Musical Chairs In the traditional game, n children walk around a circle of n− 1 chairs while music is
playing. When the music stops, players race to sit in the nearest chair. The child left standing is eliminated,
a chair is removed and the game continues until one player is left standing. In our combinatorial variation, we
arrange n students sitting in a circle and then ask every mth student to leave the circle until no student
remains. The order in which the students leave the circle defines the permutation. For example, when n = 8
and m = 3, we obtain the permutation π = (3 5 1 7 4 2 8 6) and the inversion table πI = 24020200. In this
case, the third student is the first to leave the circle, the sixth student is the second to leave, and so on. It
turns out the the seventh student is the last to leave the circle. Note: Our game is a less violent version of the
classical Josephus problem.

Find a simple recurrence relation for the elements b1b2 . . . bn of the inversion table of the resulting
permutation for arbitrary n and m.

8. The inversion table that we defined in Definition 2 could also be called a left-inversion table. It turns out that
several others can be defined. So let π = (π1 π2 · · · πn) ∈ Sn and let E(π) be the set of inversion pairs as
before. We define the right-inversion table πR = c1c2 . . . cn, where cj counts the number of inversions whose
first component is j. Notice that 0 ≤ cj < j. For example, if π = (4 6 3 5 1 2) then πI = 442010, as we saw
before, and πR = 002324.

Now let Cj = cπj
. Prove that π ∈ Sn is an involution if and only if bj = Cj for 1 ≤ j ≤ n.
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