MTH 481 Inversions

Let 7 : [n] — [n] be a bijection and for 1 < j <n, let 7; = w(j). Then 7 € Sy, that is, 7 is a permutation on n
elements and 7 is usually represented in one of the following ways.

First, we have the usual two-line representation.
S 1 2 3 -+ n—1 n
Ty T T3 - Tnpn_1 Tn
Using only the second line in the above representation we immediately obtain the one-line representation. That is,

™= (71'1 T2 3+ TTp—1 ﬂ'n)

Another common representation of a permutation is called cycle notation, which is more easily explained with an
example.

Example 1. Rewrite the permutations below using cycle notation.

a. m=(2146375) €S

Then 7 consists of two cycles ¢; = (12) and cp = (34675) and is written
m = (12)(34675) = (34675)(12)
The cycle ¢ is called a transposition since it has length two.

b. 6§ =(4213) €Sy so that
§ = (143)(2) = (143)

Notice that 2 is a fixed point since 7w(2) = 2 and it is customary to omit fixed points when representing
permutations using cycle notation. This can be confusing at times, so we will only omit fixed points when there
is a good reason to do so.

c. Finally, let v = (145)(26)(3) € Sg. Then using two-line notation we would write

To get the one-line version, we simply ignore the first row.
y=(463512)

Remark. The various notations have advantages. For our current task, the one-line notation will make it easier to
recognize runs and inversions. Cycle notation will be the focus of section 6.1 when we introduce Stirling Numbers
of the First Kind, i.e., cycle numbers.
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One can also represent permutations using the so-called inversion table which we define below.

Definition 2. Let 7 = (my mo w3 -+ Tp—1 Tp) € Sy. Suppose that for some 7 < j we have m; > ;. Then the pair
(m;, ;) is called an inversion (pair) of .

Now let E(m) denote the set of all inversion pairs for the permutation m. We can construct an inversion table
71 = biby - - - by, of the permutation 7 by letting b; to count the number of inversion pairs (in E(m)) such that j is
the second component. It is easy to see that 0 < b; < n — j. In particular, the last entry in the table must be 0
since (j,n) ¢ E(rw) for any j.

Finally, define the inversion number i(7) of 7, by the rule

i(m) = |E(m| =) b (1)
k=1

For example, the pairs (6,3) and (5,2) are two 2 of the 11 inversions of the permutation 7 = (4 6 351 2) . Can
you identify the other 97 Now the inversion table m; = 442010 since

E(r) ={(4,3),(4,1),(4,2),(6,3),(6,5),(6,1),(6,2),(3,1),(3,2), (5,1), (5,2)}

It turns out the we can recover the original permutation from its inversion table.

Example 3. Let 6; = 2112010. Let’s try to recover the permutation 6. We begin with 7.
7

Now since 6 is out of order once, we must have
76

Notice that 5 never appears as the second entry in F(§), so it must preceed 6 and 7.
576

Continuing

5746

53746
523746
5213746

We leave it as an exercise to confirm that the inversion table for 6 = (5213 7 4 6) is §; = 2112010.

It turns out that there is a interesting relationship between inversions and inverses. Given a permutation, we can
quickly construct its inverse by using the two-line notation. For example, let 7 = (53 1 2 6 4) € Sg and switch back

to the two-line format.
1 2 3 4 5 6
5 3 1 2 6 4

Now swap the rows
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Finally, reorder the columns using the top row to obtain
1 2 3 4 5 6
342 6 15

It is easy to see that the 77! = (34 2 6 1 5). Now observe that m; = 420010 and 7r1_1 = 221200 so that both 7 and
7! have the same number of inversions. In other words, i(7) = i(7~1).

This fact was first proved by H. A. Rothe in 1800. Let 7 = (m w2 -+ m,) € S, and construct an n x n grid P as
follows. Place a dot in column k of row j whenever m; = k. Then place x signs in all squares that have dots below
and to the right of the given square. We claim that b; is equal to the number of x signs in column j and the total
number of inversions is given by the total number of x signs. Notice that the transpose of P represents 7! and
the placement of the x signs conforms to the procedure described above.

We illustrate with an example. Once again let 7 = (53 1 2 6 4). Since m; = 5 we place a dot in the fifth column of
the first row. Continuing, we place a dot in the third column of the second row, and so on. Now place x signs as
prescribed. Figure 1 shows the resulting grid and its transpose.

X | X|®

X | X | X | X
[ ]

Figure 1: Inversion grid P(7) and its transpose for the permutation 7

Now let I,,(k) denote the number of permutations on n elements with exactly k inversions. We note that I,,(0) = 1
since the identity is the only permutation with 0 inversions. It is not too hard to see that I,,(1) =n — 1. We also

have a symmetric property
I, ((Z) - k) = L(k) (2)

Proposition 4. Let I4(0) =1 and for n € N and k <0, let I,,(k) = 0. Then for n > 0 we have

LK) = 3 Lk — ) 3)
=0

Proof: Let m=(m 7o -+ mp_1) € Sp—1 and let 7U) denote the n-permutation
(12 o+ n o Tat)
jth slot

It is easy to see that i(7(/)) = i(r) + n — j. Now suppose that © € S,,_; has m inversions with
Max(0,k +1—mn) <m < k. Then i (7(™*"=%) =m +n— (m+n—k) = k. It follows that

k

L= Y L

m=Max(0,k+1—n)

k

Z In,l(m)

m=k+1—n
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n 4 0o 1 2 3 4 5 6 7 8 9 10 11
1 110 0 O 0 0 0 0 0 0 0 0
2 1 1 0 O 0 0 0 0 0 0 0 0
3 1 2 2 1 0 0 0 0 0 0 0 0
4 1 3 5 5 3 1 0 0 0 0 0
5) 1 4 9 15 20 22 20 15 9 4 1 0
6 1 5 14 29 49 71 90 101 101 90 71 49
7 1 6 20 49 98 169 259 | 359 455 531 573 573
8 1 7 27 76 174 343 602 1415 1940 2493 3017

Table 1: Permutations on [n] with k& inversions

since I,—1(m) = 0 whenever m < 0. Now after the substitution m = k — j, the last expression is equal to the
right-hand side of (3). O

With the help of (4), we can now generate a Pascal type triangle for I,,(k). Table 1 displays the first 8 rows of such
a table. Notice that we have the recursion formula below, which is valid for k¥ < n (below the zig-zag border).

Li(k) = I,(k=1) + I, 1(k), k<n (4)

We list just two of the numerous formulas involving inversion numbers.

= () ). v
= (1)) »e

We wish to define another important property associated with permutations and inversion numbers, parity.

Definition 5. Let 7 € S,, be a permutation. Define the map sgn: S,, — {—1,1} by the rule sgn(r) = (—1)*™.
Then 7 is called an even permutation if sgn(m) = 1 and an odd permutation if sgn(m) = —1. In other words, even
permutations have an even number of inversions and odd permutations have an odd number of inversions. We shall
call sgn the parity operator.

Theorem 6. Let o, 8 € S,, be permutations and let sgn be parity operator defined above. Then
sgn(a f) = sgn(a) sgn(f)
In other words, the sgn operator is multiplicative.

Example 7. Let o, 8 € S7, with o = (24156)(37) and 8 = (1)(2)(35)(4)(6)(7) = (35). Notice that we are using
cycle notation and, at least in this example, we are suppressing the fixed points of 3. We leave it as an exercise to
confirm that i(a)) = 13 and () = 3. Hence a and  are odd permutations. On the other hand,

af=(5461723)
so that
E(afB) = {54,51,52,53,41,42,43,61, 62,63, 72,73}
and
i(af) =12

In other words, af is even, as expected.
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Generating Functions

Now for a fixed n, let J,,(z) denote the ordinary power series generating function for {I,,(k)}r>0. That is, let
In(x) =3 150 I,,(k)z*. Then by Proposition 4,

Tn(x) =Y I(k)a*

k>0

= Z i In-(k _j)xk

k>0 =0

n—1

B ) S AN P

j=0 k>0
n—1
@S
7=0

In other words, J,(z) satisfies the recursion equation
Jo(@) =1 +z+2®+- +2" 1), ()
Now since Ji(x) = 1, we have shown
Theorem 8.
Jo(@)=04+z+2®+- 42" (1+2)(1) (5)

(1—a2™)(1 -2 ). (1-22)(1-2)

- (1—x)» (©)
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Exercises

1. Let 7 = (146)(23)(57) € 5.

(a) Rewrite 7 using one-line notation and find the inversion table for w. Hint: It might be easier to convert
from cycle notation to two-line notation first.

(b) Find the inversion table for 7=1. Also, confirm that i(7) = i(7~1).

2. Let 0 = (54 2 3 1). Find the set of inversions of o, E(0). Also, compute the inversion grid P(o) (see
Figure 1). Explain why the grid construction works.

3. Let 65 = 4102110 € I7 be an inversion table for some ¢ € S;. Find ¢.

4. Let m = (71 g +-+ m,) € S, be a permutation and let E(7) be the set of its inversions.

(a) Prove that E(m) is transitive. That is, prove that if (a,b) and (b, ¢) are in E(r), then (a,c) € E(7).

(b) Conversely, let E be any transitive subset of T'= {(z,y) : 1 <y <z <n; z,y € [n]} whose complement
E¢ =T\ E is also transitive. Prove that there is a permutation 7 such that E(w) = E.

5. Let m € S,, and let m; = b1by...b, be its inversion table. Now suppose that oy = b\, ... b/, where

W, =n—j—b;. Findo.
I, ((’;) - k) = I, (k) (7)

7. Musical Chairs In the traditional game, n children walk around a circle of n — 1 chairs while music is
playing. When the music stops, players race to sit in the nearest chair. The child left standing is eliminated,
a chair is removed and the game continues until one player is left standing. In our combinatorial variation, we
arrange n students sitting in a circle and then ask every mth student to leave the circle until no student
remains. The order in which the students leave the circle defines the permutation. For example, when n = 8
and m = 3, we obtain the permutation 7 = (351 7 4 2 8 6) and the inversion table m; = 24020200. In this
case, the third student is the first to leave the circle, the sixth student is the second to leave, and so on. It
turns out the the seventh student is the last to leave the circle. Note: Our game is a less violent version of the
classical Josephus problem.

6. Prove the symmetric property

Find a simple recurrence relation for the elements b1bs ... b, of the inversion table of the resulting
permutation for arbitrary n and m.

8. The inversion table that we defined in Definition 2 could also be called a left-inversion table. It turns out that
several others can be defined. So let m = (m 3 --- m,) € S,, and let E(m) be the set of inversion pairs as
before. We define the right-inversion table 7g = cica ... ¢y, where ¢; counts the number of inversions whose
first component is j. Notice that 0 < ¢; < j. For example, if 7 = (4 6 3 5 1 2) then m; = 442010, as we saw
before, and wr = 002324.

Now let Cj = ¢g;. Prove that 7 € S, is an involution if and only if b; = Cj for 1 < j < n.



