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Chapter 3

There Are A Lot Of Them.
Elementary Counting Problems

In the first two chapters, we have explained how to use the Pigeon-hole

Principle and the method of mathematical induction to draw conclusions

from certain numbers. However, to find those numbers is not always easy.

It is high time that we learned some fundamental counting techniques.

3.1 Permutations

Let us assume that n people arrived at a dentist’s office at the same time.

The dentist will treat them one by one, so they must first decide the order

in which they will be served. How many different orders are possible?

This problem, that is, arranging different objects linearly, is so om-

nipresent in combinatorics that we will have a name for both the arrange-

ments and the number of arrangements. However, we are going to answer

the question first.

Certainly, there are n choices for the person who will indulge in dental

pleasures first. How many choices are there for the person who goes second?

There are only n−1 choices as the person who went first will not go second,

but everybody else can.

The crucial observation now is that for each of the n choices for the

patient to be seen first, we have n − 1 choices for the patient who will be

seen second. Therefore, we have n(n− 1) ways to select these two patients.

If you do not believe this, try it out with four patients, called A, B, C,

and D, and you will see that there are indeed 12 ways the first two lucky

patients can be chosen.

We can then proceed in a similar manner: we have n − 2 choices for

the patient to be seen third as the first two patients no longer need to be

seen. Then we have n − 3 choices for the patient to be seen fourth, and

43
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so on, two choices for the patient to be seen next-to-last, and only one

choice, the remaining, frightened patient, to be seen last. Therefore, the

number of orders in which the patients can sit down in the dentist’s chair

is n · (n− 1) · (n− 2) · · · 2 · 1.
Definition 3.1. The arrangement of different objects into a linear order

using each object exactly once is called a permutation of these objects. The

number n · (n− 1) · (n− 2) · · · 2 · 1 of all permutations of n objects is called

n factorial, and is denoted by n!.

So we have just proved the following basic theorem.

Theorem 3.2. The number of all permutations of an n-element set is n!.

We note that by convention, 0! = 1. If you really want to know why we

choose 0! to be 1, and not, say, 0, here is an answer. Let us assume that

there are n people in a room and m people in another room. How many

ways are there for people in the first room to form a line and people in the

second room to form a line? The answer is, of course, n! ·m! as any line in

the first room is possible with any line in the second room. Now consider

the special case of n = 0. Then people in the second room can still form

m! different lines. Therefore, if we want our answer, n!m! to be correct in

this singular case too, we must choose 0! = 1. You will soon see that there

are plenty of other situations that show that 0! = 1 is the good definition.

The number n! is extremely important in combinatorial enumeration,

as you will see throughout this book. You may wonder how large this

number is, in terms of n. This question can be answered at various levels of

precision. All answers that are at least somewhat precise require advanced

calculus. Here we will just mention, without proof that

n! ∼
√
2πn

(n
e

)n
. (3.1)

The symbol n! ∼ z(n) sign means that limn→∞ n!
z(n) = 1. Relation (3.1) is

called Stirling’s formula, and we will use it in several later chapters.

Example 3.3. How many different flags can we construct using colors

red, white, and green if all flags must consist of three horizontal stripes

of different colors?

Solution. By Theorem 3.2, the answer is 3! = 3 · 2 · 1 = 6. It is easy to

convince ourselves that this is indeed correct by listing all six flags: RWG,

RGW, WRG, WGR and GWR, and GRW.
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The simplicity of the answer to the previous question was due to several

factors: we used each of our objects exactly once, the order of the objects

mattered, and the objects were all different. In the rest of this section we

will study problems without one or more of these simplifying factors.

Example 3.4. A gardener has five red flowers, three yellow flowers and

two white flowers to plant in a row. In how many different ways can she

do that?

This problem differs from the previous one in only one aspect: the

objects are not all different. The collection of the five red, three yellow,

and two white flowers is often called a multiset. A linear order that contains

all the elements of a multiset exactly once is called a multiset permutation.

How many permutations does our multiset have? We are going to an-

swer this question by reducing it to the previous one, in which all objects

were different. Assume our gardener plants her flowers in a row, in any of

A different ways, then sticks labels (say numbers 1 through 5 for the red

flowers, 1 through 3 for the yellow ones, and 1 through 2 for the white ones)

to her flowers so that she can distinguish them. Now she has ten different

flowers, and therefore the row of flowers she has just finished working on can

look in 10! different ways. We have to tell how many of these arrangements

differ only because of these labels.

The five red flowers could be given five different labels in 5! different

ways. The three yellow flowers could be given three different labels in 3!

different ways. The two white flowers could be given two different labels in

2! different ways. Moreover, the labeling of flowers of different colors can be

done independently of each other. Therefore, the labeling of all ten flowers

can be done in 5! · 3! · 2! different ways once the flowers are planted in any

of A different ways. Therefore, A · 5! · 3! · 2! = 10!, or, in other words,

A =
10!

5! · 3! · 2! = 2520.

This argument can easily be generalized to a general theorem. However,

we will need a greater level of abstraction in our notations to achieve that.

This is because we will take general variables for the number of objects, but

also for the number of different kinds of objects. In other words, instead

of saying that we have five red flowers, three yellow flowers, and two white

flowers, we will allow flowers of k different colors, and we will say that there

are a1 flowers of the first color, a2 flowers of the second color, a3 flowers
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of the third color, and so on. We complete the set of these conditions by

saying that we have ak flowers of color k (or ak flowers of the kth color).

This is a long set of conditions, so some shorter way of expressing it

would certainly make it less cumbersome. We will achieve this by saying

that we have ai flowers of color i, for all i ∈ [k]. Instead of saying that

we plant our flowers in a line, we will often say that we linearly order our

objects.

Now we are in a position to state our general theorem.

Theorem 3.5. Let n, k, a1, a2, · · · , ak be nonnegative integers satisfying

a1 + a2 + · · · + ak = n. Consider a multiset of n objects, in which ai
objects are of type i, for all i ∈ [k]. Then the number of ways to linearly

order these objects is

n!

a1! · a2! · · · · · ak! .

Proof. This is a generalization of Example 3.4, and the same idea of proof

works here. The reader should work out the details.

Quick Check

(1) How many ways are there to permute the elements of the set [7] so

that an even number is in the first position?

(2) How many ways are there to permute elements of the multiset

{1, 1, 2, 2, 3, 4, 5, 6} so that the first and last elements are different?

(3) A garden has two rectangular flower beds. In the first bed, we will

plant five different flowers in a row. In the second bed, we will plant six

flowers in a row, so that there will be two flowers of each of three kinds.

For which flower bed do we have more possibilities of proceeding?

3.2 Strings over a Finite Alphabet

Now we are going to study problems in which we are not simply arranging

certain objects, knowing how many times we can use each object, but rather

construct strings, or words, from a finite set of symbols, which we call a

finite alphabet. We will not require that each symbol occur a specific number

of times; though we may require that each symbol occur at most once.

Theorem 3.6. The number of k-digit strings over an n-element alphabet

is nk.
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Proof. We can choose the first digit in n different ways. Then, we can

choose the second digit in n different ways as well since we are allowed to

use the same digit again (unlike in case of permutations). Similarly, we

can choose the third, fourth, etc., kth element in n different ways. We can

make all these choices independently from each other, so the total number

of choices is nk.

Example 3.7. The number of k-digit positive integers is 9 · 10k−1.

Solution. There are two ways one can see this. From Theorem 3.6, we

know that the number of k-digit strings that can be made up from the

alphabet {0, 1, · · · , 9} is 10k. However, not all these yield a k-digit positive

integer. Indeed, those with first digit 0 do not. What is the number of

these bad strings? Disregarding their first digit, these strings are (k − 1)-

digit strings over {0, 1, · · · , 9} with no restriction, so Theorem 3.6 shows

that there are 10k−1 of them. Therefore, the number of k-digit strings that

do not start with 0, in other words, the number of k-digit positive integers

is 10k − 10k−1 = 9 · 10k−1 as claimed.

Alternatively, we could argue as follows. We have 9 choices for the first

digit (everything but 0), and ten choices for each of the remaining k − 1

digits. Therefore, the number of total choices is 9 ·10 ·10 · · · ··10 = 9 ·10k−1,

just as in the previous argument.

Before we discuss our next example, we mention a general technique in

enumeration, the method of bijections. Let us assume that there are many

men and many women in a huge ballroom. We do not know the number of

men, but we know that the number of women is exactly 253. We think that

the number of men is also 253, but we are not sure. What is a fast way to

test this conjecture? We can ask the men and women to form man-woman

pairs. If they succeed in doing this, that is, nobody is left without a match,

and everyone has a match of the opposite gender, then we know that the

number of men is 253 as well. If not, then there are two possibilities: if

some man did not find a woman for himself, then the number of men is

more than 253. If some woman did not find a man, then the number of

men is less than 253.

This technique of matching two sets element-wise and then conclude

(in case of success) that the sets are equinumerous is very often used in

combinatorial enumeration. Let us put it in a more formal context.
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Definition 3.8. Let X and Y be two finite sets, and let f : X → Y be a

function so that

(1) if f(a) = f(b), then a = b, and

(2) for all y ∈ Y there is an x ∈ X so that f(x) = y,

then we say that f is a bijection from X onto Y . Equivalently, f is a

bijection if for all y ∈ Y , there exists a unique x ∈ X so that f(x) = y.

In other words, a bijection matches the elements of X with the elements

of Y , so that each element will have exactly one match.

The functions that have only one of the two defining properties of bi-

jections also have their own names.

Definition 3.9. Let f : X → Y be a function. If f satisfies criterion (1)

of Definition 3.8, then we say that f is one-to-one or injective, or is an

injection. If f satisfies criterion (2) of Definition 3.8, then we say that f is

onto or surjective, or is a surjection.

Proposition 3.10. Let X and Y be two finite sets. If there exists a bijec-

tion f from X onto Y , then X and Y have the same number of elements.

Proof. The bijection f matches elements of X to elements of Y , in other

words it creates pairs with one element from X and one from Y in each

pair. If f created m pairs, then both X and Y have m elements.

The advantages of the bijective method are significant. Instead of enu-

merating the elements of X , we can enumerate the elements of Y if that

is easier. Then, we can find a bijection from X onto Y . Let us illustrate

this by computing the number of all subsets of [n] without resorting to

induction.

Example 3.11. The number of all subsets of an n-element set is 2n.

Solution. We construct a bijection from the set of all subsets of an n-

element set into that of all n-digit strings over the binary alphabet {0, 1}.
As this latter set has 2n elements by Theorem 3.6, it will follow that so

does the former.

To construct the bijection, let B be any subset of [n]. Now let f(B) be

the string whose ith digit is 1 if and only if i ∈ B and 0 otherwise. This way

f(B) will indeed be an n-digit word over the binary alphabet. Moreover, it

is clear that given any string s of length n containing digits equal to 0 and
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1 only, we can find the unique subset B ⊆ [n] for which f(B) = s. Indeed,

B will precisely consist of the elements i ∈ [n] so that the ith element of s

is 1.

Example 3.12. A city has recently built ten intersections. Some of these

will get traffic lights, and some of those that get traffic lights will also get

a gas station. In how many different ways can this happen?

Solution. It is easy to construct a bijection from the set of all distributions

of lights and gas stations onto that of ten-digit words over the alphabet

A,B,C. Indeed, for each distribution of these objects, we define a word

over {A,B,C} as follows: if the ith intersection gets both a gas station and

a traffic light, then let the ith digit of the word that we are constructing

be A, if only a traffic light, then let the ith digit be B, and if neither, then

let the ith digit be C.

Clearly, this is a bijection, for any ten-digit word can be obtained from

exactly one distribution of gas stations and traffic lights this way. So the

number we are looking for is, by Proposition 3.10, the number of all ten-

digit words over a three-digit alphabet, that is, 310.

Theorem 3.13. Let n and k be positive integers satisfying n ≥ k. Then

the number of k-digit strings over an n-element alphabet in which no letter

is used more than once is

n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

Proof. Indeed, we have n choices for the first digit, n − 1 choices for the

second digit, and so on, just as we did in the case of factorials. The only

difference is that here we do not necessarily use all our n objects, we stop

after choosing k of them.

The number n(n− 1) · · · (n− k + 1) is sometimes denoted (n)k.

Example 3.14. A president must choose five politicians from a pool of

20 candidates to fill five different cabinet positions. In how many different

ways can she do that?

Solution. We can directly apply Theorem 3.13. We have a 20-element

alphabet (the politicians) and we need to count the number of 5-letter words

with no repeated letters. Therefore, the answer is (20)5 = 20 ·19 ·18 ·17 ·16.
If the candidates are all equally qualified, it may take a while...
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Quick Check

(1) How many six-digit positive integers are there in which the first and

last digits are the same?

(2) How many six-digit positive integers are there in which the first and

last digits are of the same parity?

(3) How many functions f : [n] → [n] are there for which there exists

exactly one i ∈ [n] satisfying f(i) = i?

3.3 Choice Problems

At the national lottery drawings in Hungary, five numbers are selected at

random from the set [90]. To win the main prize, one must guess all five

numbers correctly. How many lottery tickets does one need in order to

secure the main prize?

This problem is an example of the last and most interesting kind of ele-

mentary enumeration problems, called choice problems. In these problems,

we have to choose certain subsets of a given set. We will often require that

the subsets have a specific size. The important difference from the previous

two sections is that the order of the elements of the subset will not matter;

for example, {1, 43, 52, 8, 3} and {52, 1, 8, 43, 3} are identical as subsets of

[90].

The number of k-element subsets of [n] is of pivotal importance in enu-

merative combinatorics. Therefore, we have a symbol and name for this

number.

Definition 3.15. The number of k-element subsets of [n] is denoted
(
n
k

)
and is read “n choose k”.

The numbers
(
n
k

)
are often called binomial coefficients, for reasons that

will become clear in Chapter 4.

Theorem 3.16. For all nonnegative integers k ≤ n, the equality(
n

k

)
=

n!

k!(n− k)!
=

(n)k
k!

holds.

Proof. To select a k-element subset of [n], we first select a k-element string

in which the digits are elements of [n]. By Theorem 3.6, we can do that

in n!/(n − k)! different ways. However, in these strings the order of the

elements does matter. In fact, each k-element subset occurs k! times among
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these strings as its elements can be permuted in k! different ways. Therefore,

the number of k-element subsets is 1/k! times the number of k-element

strings, and the proof follows.

Therefore, if we want to be absolutely sure to win at the Hungarian

lottery, we have to buy
(
90
5

)
= 90·89·88·87·86

1·2·3·4·5 = 43949268 tickets. If you do

that, make sure you fill them out right...

Definition 3.17. Let S ⊆ [n]. Then the complement of S, denoted Sc is

the subset of [n] that consists precisely of the elements that are not in S.

In other words, Sc is the unique subset of [n] that for all i ∈ [n] satisfies

the following statement: i ∈ Sc if and only if i /∈ S.

The following proposition summarizes some straightforward properties

of the numbers
(
n
k

)
. We choose to announce these easy statements as a

proposition since they will be used incessantly in the coming sections.

Proposition 3.18. For all nonnegative integers k ≤ n, the following hold.

(1) (
n

k

)
=

(
n

n− k

)
.

(2) (
n

0

)
=

(
n

n

)
= 1.

Proof. (1) We set up a bijection f from the set of all k-element subsets

of [n] onto that of all n − k-element subsets of n. This f will be

simplicity itself: it will map any given k-element subset S ⊆ [n] into

its complement Sc. Then for any n − k-element subset T ⊆ [n], there

is exactly one S so that f(S) = T , namely S = T c. So f is indeed

a bijection, proving that the number of k-element subsets of [n] is the

same as that of n−k-element subsets of [n], which, by definition, means

that
(
n
k

)
=
(

n
n−k

)
.

(2) The first equality is a special case of the claim of part 1, with k = 0.

To see that
(
n
0

)
= 1, note that the only 0-element subset of [n] is the

empty set.

We note in particular that
(
0
0

)
= 1, and that sometimes it is convenient

to define
(
n
k

)
even in the case when n < k. It goes without saying that in
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that case, we define
(
n
k

)
= 0 as no set has a subset that is larger than the

set itself.

Example 3.19. A medical student has to work in a hospital for five days

in January. However, he is not allowed to work two consecutive days in the

hospital. In how many different ways can he choose the five days he will

work in the hospital?

Solution. The difficulty here is to make sure that we do not choose

two consecutive days. This can be assured by the following trick. Let

a1, a2, a3, a4, a5 be the dates of the five days of January that the student

will spend in the hospital, in increasing order. Note that the requirement

that there are no two consecutive numbers among the ai, and 1 ≤ ai ≤ 31

for all i is equivalent to the requirement that 1 ≤ a1 < a2 − 1 < a3 − 2 <

a4− 3 < a5− 4 ≤ 27. In other words, there is an obvious bijection between

the set of 5-element subsets of [31] containing no two consecutive elements

and the set of 5-element subsets of [27].

Instead of choosing the numbers ai, we can choose the numbers 1 ≤
a1 < a2 − 1 < a3 − 2 < a4 − 3 < a5 − 4 ≤ 27, that is, we can simply choose

a five-element subset of [27], and we know that there are
(
27
5

)
ways to do

that.

The trick we used here is also useful when instead of requiring that the

chosen elements are far apart, we even allow them to be identical.

Example 3.20. Now let us assume that we play a lottery game where five

numbers are drawn out of [90], but the numbers drawn are put back into

the basket right after being selected. To win the jackpot, one must have

played the same multiset of numbers as the one drawn (regardless of the

order in which the numbers were drawn). How many lottery tickets do we

have to buy to make sure that we win the jackpot?

Solution. We are going to apply the same trick as in the previous example,

just backwards. We claim there is a bijection from the set of 5-element

multisets

1 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ b5 ≤ 90 (3.2)

onto the set of 5-elements subsets of [94]. Indeed, such a bijection f is

given by f(b1, b2, b3, b4, b5) = (b1, b2 + 1, b3 + 2, b4 + 3, b5 + 4). It is obvious

that the numbers bi satisfy the requirements given by (3.2) if and only if
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f(b1, b2, b3, b4, b5) = (b1, b2 + 1, b3 + 2, b4 + 3, b5 + 4) is a subset of [94].

Therefore, we need to buy
(
94
5

)
lottery tickets to secure a jackpot.

There is nothing magic about the numbers 90 and 5 here. In fact, the

same argument can be repeated in a general setup, to yield the following

Theorem.

Theorem 3.21. The number of k-element multisets whose elements all

belong to [n] is (
n+ k − 1

k

)
.

The following table summarizes our enumeration theorems proved in this

chapter.

parameters formula

Permutations

n distinct objects n!

ai objects of type i, n!

a1!a2! · · · ak!∑
ai = n

Lists

n distinct objects
(n)k =

n!

(n− k)!list of length k

n distinct letters
nk

words of length k

Subsets

k-element subsets of [n]

(
n

k

)

k-element multisets
(
n+ k − 1

k

)
with elements from [n]

Quick Check

(1) A company has 20 male and 15 female employees. How many ways

are there to form a committee consisting of four male and three female

employees of the company?
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(2) A professor wants to schedule a total of three hours of office hours for

the next five days. In how many ways is that possible if the length of

each office hour must be an integer (in hours)?

(3) In one lottery, we have to correctly pick five numbers out of ten in

order to win, repetitions are not possible, and the order of the chosen

numbers does not matter. In another lottery, we have to correctly pick

four numbers out of ten, repetitions are possible, and the order of the

chosen numbers does not matter. In which lottery do we have a higher

chance to win?

Notes

One of the most difficult exercises of this chapter is Exercise 24. The

first mathematician to prove the formula given in that exercise was prob-

ably P. A. MacMahon [35], in 1916. The proof presented here is due to

the present author [17]. A high-level survey (using commutative algebra)

of results concerning magic squares can be found in “Combinatorics and

Commutative Algebra” [48] by Richard Stanley, while a survey intended

for undergraduate and starting graduate students is presented in Chapter 9

of “Introduction to Enumerative and Analytic Combinatorics” [11] by the

present author.

Exercises

(1) How many functions are there from [n] to [n] that are not one-to-one?

(2) Prove that the number of subsets of [n] that have an odd number of

elements is 2n−1.

(3) A company has 20 employees, 12 males and eight females. How many

ways are there to form a committee of 5 employees that contains at

least one male and at least one female?

(4) A track and field championship has participants from 49 countries. The

flag of each participating country consists of three horizontal stripes of

different colors. However, no flag contains colors other than red, white,

blue, and green. Is it true that there are three participating countries

with identical flags?

(5) In countries that currently belong to a certain alliance, 17 languages are

spoken by at least ten million people. For any two of these languages,

the alliance employs an interpreter who can translate documents from

one language to the other, and vice versa. One journalist has recently
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noted that when the soon-to-be admitted countries bring the number

of languages spoken by at least ten million people in the alliance to 22,

more than a hundred new interpreters will be needed. Was she right?

(No interpreter works two jobs.)

(6) How many five-digit positive integers are there with middle digit 6 that

are divisible by three?

(7) How many five-digit positive integers are there that contain the digit 9

and are divisible by three?

(8) How many ways are there to list the digits {1, 2, 2, 3, 4, 5, 6} so that

identical digits are not in consecutive positions?

(9) How many ways are there to list the digits {1, 1, 2, 2, 3, 4, 5} so that the

two 1s are in consecutive positions?

(10) A cashier wants to work five days a week, but he wants to have at least

one of Saturday and Sunday off. In how many ways can he choose the

days he will work?

(11) A car dealership employs five salespeople. A salesperson receives a

100-dollar bonus for each car he or she sells. Yesterday the dealer-

ship sold seven cars. In how many different ways could this happen?

(Let us consider two scenarios different if they result in different bonus

payments.)

(12) A traveling agent has to visit four cities, each of them five times. In

how many different ways can he do this if he is not allowed to start and

finish in the same city?

(13) A college professor has been working for the same department for 30

years. He taught two courses in each semester. The department offers

15 different courses. Is it sure that there were at least two semesters

when this professor had identical teaching programs? (A year has two

semesters.)

(14) A restaurant offers five different soups, ten main courses, and six

desserts. Joe decided to order at most one soup, at most one main

course, and at most one dessert. In how many ways can he do this?

(15) A student in physics needs to spend five days in a laboratory during her

last semester of studies. After each day in the lab, she needs to spend

at least six days in her office to analyze the data before she can return

to the lab. After the last day in the lab, she needs ten days to complete

her report that is due at the end of the last day of the semester. In how

many ways can she choose her lab days if we assume that the semester

is 105 days long?

(16)(a) Three friends, having the nice names A, B, and C played a ping-
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pong tournament each day of a given week. There were no ties at

the end of the tournament. Prove that there were two days when

the final ranking of the three people was the same.

(b) A fourth person, called D, joined the company of the mentioned

three. These four friends played a tennis competition each day for

five weeks. When the five weeks were over, one of them noticed that

none of their one-day tournaments resulted in a tie at the first place,

or in a tie at the last place. Is it true that there were two contests

with the same final ranking of players?

(c) Now A, B and, C are playing a round-robin chess tournament each

day starting January 1. Each player plays against each other player

once playing the white pieces, and once playing the black pieces.

The three friends agreed that they will stop when there will be two

days with completely identical results. (That is, if on the earlier

day, A beat B when playing the whites, but played a draw with him

when playing the blacks, then, on the last day the friends play, A

has to beat B when playing the whites, and has to play a draw with

him when playing the blacks, and the same coinciding results must

occur for the pair (B,C), and for the pair (A,C).)

When their left-out friend, D, heard about their plan, she said “are

you sure you want to do this? You might be playing chess for two

years!” Was she exaggerating?

(17) Let k ≥ 1, and let b1, b2, · · · , bk be positive integers with sum less than

n, where n is a positive integer. Prove that then

b1!b2! · · · bk! < n!

holds. Can you make that statement stronger?

(18) How many 6-digit positive integers are there in which the sum of the

digits is at most 51?

(19) How many ways are there to select an 11-member soccer team and a

5-member basketball team from a class of 30 students if

(a) nobody can be on two teams

(b) any number of students can be on both teams

(c) at most one student can be on both teams?

(20) On the island of Combinatoria, all cars have license plates consisting

of six numerical digits only. A witness to a crime could only give

a partial description of the getaway car. In particular, she noticed

that the license plate was from Combinatoria, there was only one digit

that occurred more than once, and that digit occurred three times. A
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police officer estimated that this information will exclude more than 90

percent of all cars as suspects. Was his estimate correct?

(21) (+) A round robin chess tournament had 2n participants from two

countries, n from each country. There were no two players with the

same number of points at the end. Prove that there was at least one

player who scored at least as many points against his compatriots as

against the players of the other country. (In chess, a player gets one

point for a win and one half of a point for a draw.)

(22) (+)

(a) At a round robin chess tournament, at least 3/4 of the games ended

by a draw. Prove that there were two players who had the same

final score.

(b) Now assume the tournament has been interrupted after t rounds,

that is, after each player has finished t games. (We assume, for

simplicity, that the number of players is even.) Is it still true that if

at least 3/4 of the games played ended by a draw, then there were

two players with the same total score?

(c) Prove that if the games of the tournament are played in a random

order (there are no rounds; one player can finish many games before

another player starts), and the tournament is interrupted at some

point. Could it happen that three 3/4 of the finished games ended

by a draw, but there were no two players with the same total score?

(d) Is there a constant K < 1 such that if we organize the tournament

as in the preceding case, and we interrupt the tournament at a point

when at least K of the finished games ended by a draw, then there

will always be two players with the same total score?

(23) In how many different ways can we place eight identical rooks on a

chess board so that no two of them attack each other?

(24) (++) A magic square is a square matrix with nonnegative integer en-

tries in which all row sums and column sums are equal. Let H3(r) be

the number of magic squares of size 3×3 in which each row and column

have sum r. Prove that

H3(r) =

(
r + 4

4

)
+

(
r + 3

4

)
+

(
r + 2

4

)
, (3.3)

where H3(r) is the number of 3 × 3 magic squares of line sum r. We

will return to formula (3.3) in Chapter 11. The material covered in

that chapter will allow us to give a simpler proof to this result.
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(25) How many ways are there to select a subset S ⊆ [15] so that S does

not have two distinct elements a and b for which a + b is divisible by

three?

(26) How many permutations of the set [n] are there in which no entry is

larger than both of its neighbors? (We can assume that the condition

is automatically satisfied for the leftmost and the rightmost entry.)

Supplementary Exercises

(27) (-) How many three-digit positive integers contain two (but not three)

different digits?

(28) (-) How many ways are there to list the letters of the word AL-

ABAMA?

(29) (-) How many subsets does [n] have that contain exactly one of the

elements 1 and 2?

(30) (-) How many subsets does [n] have that contain at least one of the

elements 1 and 2?

(31) (-) How many three-digit positive integers start and end with an even

digit?

(32) How many four-digit positive integers are there in which all digits are

different?

(33) How many four-digit positive integers are there that contain the digit

1?

(34) How many n-element subsets S ⊆ [2n] are there so that there are no

two elements x and y in S satisfying x+ y = 2n+ 1?

(35) How many subsets S ⊆ [2n] are there (of any size) so that there are

no two elements x and y in S satisfying x+ y = 2n+ 1?

(36) How many three-digit numbers are there in which the sum of the digits

is even? (We do not allow the first digit to be zero.)

(37) In this exercise, the words precede does not mean immediately precede.

(a) In how many ways can the elements of [n] be permuted if 1 is to

precede 2 and 3 is to precede 4?

(b) In how many ways can the elements of [n] be permuted if 1 is to

precede both 2 and 3?

(38) In how many ways can the elements of [n] be permuted so that the

sum of every two consecutive elements in the permutation is odd?

(39) Let n = pa1
1 pa2

2 · · · pak

k , where the pi are distinct primes, and the ai are

positive integers. How many positive divisors does n have?
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(40)(a) Let d(n) be the number of positive divisors of n. For what numbers

n will d(n) be a power of 2?

(b) Is it true that for all positive integers n, the inequality d(n) ≤
1 + log2 n holds?

(41) A student needs to work five days in January. He does not want to

work on more than one Sunday. In how many ways can he select his

five working days? (Assume that in the year in question, January has

five Sundays.)

(42) (+) A host invites n couples to a party. She wants to ask a subset

of the 2n guests to give a speech, but she does not want to ask both

members of any couple to give speeches. In how many ways can she

proceed?

(43) We want to select as many subsets of [n] as possible so that any two

selected subsets have at least one element in common. What is the

largest number of subsets we can select?

(44) We want to select an ordered pair (A,B) of subsets of [n] so that

A ∩B �= ∅. In how many different ways can we do this?

(45) We want to select three subsets A, B, and C of [n] so that A ⊆ C,

B ⊆ C, and A ∩B �= ∅. In how many different ways can we do this?

(46) A two-day mathematics conference has n participants. Some of the

participants give a talk on Saturday, some others give a talk on Sunday.

Nobody gives more than one talk, and there may be some people who

do not give a talk at all. At the end of the conference, a few talks

are selected to be included in a book. In how many different ways is

this all possible if we assume that there is at least one talk selected

for inclusion in the book?

(47) A group organizing a faculty-student tennis match must match four

faculty volunteers to four of the 13 students who volunteered to be in

the match. In how many ways can they do this?

(48) Let P be a convex n-gon in which no three diagonals intersect in one

point. How many intersection points do the diagonals of P have?

(49) A student will study 26 hours in preparation for an exam. She will

due this in the course of six consecutive days. On each of these days,

she will study either four hours, or five hours, or six hours. In how

many different ways is this possible?

(50) (+) Andy and Brenda play with dice. They throw four dice at the

same time. If at least one of the four dice shows a six, then Andy

wins, if not, then Brenda. Who has a greater chance of winning?

(51) (+) A store has n different products for sale. Each of them has a
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different price that is at least one dollar, at most n dollars, and is

a whole dollar. A customer only has the time to inspect k different

products. After doing so, she buys the product that has the lowest

price among the k products she inspected. Prove that on average, she

will pay n+1
k+1 dollars.

(52) In how many ways can we place n non-attacking rooks on an n × n

chess board?

(53) A class is attended by n sophomores, n juniors, and n seniors. In how

many ways can these students form n groups of three people each if

each group is to contain a sophomore, a junior, and a senior?

(54) The National Football League consists of 32 teams. These teams are

first divided into two conferences, the American Conference and the

National Conference, each of which consists of sixteen teams. Then

each conference is divided into four divisions of four teams each. Each

division has a distinct name. In how many ways can this be done?

(55) Answer the question of the previous exercise if there are two teams

from New York City in the National Football League, and they cannot

be assigned to the same conference.

(56) Let P3(r) be the number of 3 × 3 magic squares that are symmetric

to their main diagonal. Prove that P3(r) ≤ (r + 1)3. (Magic squares

are defined in Exercise 24.)

(57) How many n × n square matrices are there whose entries are 0 or 1

and in which each row and column has an even sum?

(58) How many ways are there for n people to sit around a circular table if

two seating arrangements are considered identical if each person has

the same left neighbor in them?

Solutions to Exercises

(1) The number of all functions from [n] to [n] is nn by Theo-

rem 3.6. Indeed, such a function f is defined by the array

(f(1), f(2), f(3), · · · , f(n)), and any entry in this array can be any

element of [n]. If f is a one-to-one function, then the array

(f(1), f(2), f(3), · · · , f(n)) is a permutation of the elements 1, 2, · · · , n
as it contains each of them exactly once. So the number of one-to-one

functions from [n] to [n] is n!, by Theorem 3.2. Therefore, the number

of functions from [n] to [n] that are not one-to-one is nn − n!.
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Remark: Note that we were asked to compute the number of func-

tions that were not one-to-one, and we obtained that number in an

indirect way. We first computed the number of all functions from [n]

to [n], then we computed the number of all functions from [n] to [n]

that were one-to-one, and then we subtracted the second number from

the first.

This technique of “number of good objects is equal to that of all

objects minus that of bad objects” is very often used in combinatorial

enumeration. Several exercises in this chapter can be solved this way.

(2) As in the proof of Example 3.11, we can bijectively encode all subsets

of [n] by 0-1 sequences consisting of n digits. If we want this sequence

to contain an odd number of ones, then we can choose the first n− 1

digits any way we want. The last digit can be used to make sure that

the number of all ones is odd. That is, if there were an odd number

of ones among the first n − 1 digits, then the last digit has to be a

zero, otherwise it has to be a one. Therefore, we make a choice n− 1

times, and each time we have two possibilities. So the total number

of possibilities is 2n−1.

(3) There are
(
20
5

)
ways to choose five people out of our twenty employees.

However,
(
12
5

)
of these choices will result in male-only committees, and(

8
5

)
will result in female-only committees. Therefore, the number of

good choices is
(
20
5

)− (125 )− (85).
(4) There are 4 · 3 · 2 = 24 different 3-color flags that can be made from

our four colors. As 2 ·24 = 48 < 49, it follows from the general version

of the Pigeon-hole Principle that there are three identical flags among

any 49 such flags.

(5) There are
(
17
2

)
= 17·16

2 = 136 pairs that can be formed of the 17 lan-

guages currently spoken by at least ten million people in the alliance.

When the number of these languages grows to 22, the number of pairs

of languages will be
(
22
2

)
= 22·21

2 = 231, so 95 new interpreters will be

needed. Therefore, the journalist was wrong.

(6) It is well-known (see Exercise 34 of Chapter 2) that a positive integer

is divisible by three if and only if the sum of its digits is divisible

by three. Therefore, a five-digit a integer with middle digit six is

divisible by three if and only if the four-digit integer obtained by

deleting the middle digit of a is divisible by three. There are 9000 four-

digit positive integers, and the third, sixth, ninth,....,9000th of them

are divisible by 3 (these are the integers 1002, 1005, 1008,...,9999).

In other words, there are 3000 four-digit positive integers divisible by
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three, so there are 3000 five-digit positive integers divisible by three

and having middle digit 6.

(7) The number of all five-digit positive integers is 90000, and one third of

them, 30000, are divisible by three. Let us count how many of these

30000 numbers do not contain the digit nine. Such a number can start

with one of eight digits (1, 2, · · · , 8), then can have any of nine digits

(0, 1, 2, · · · , 8) in the second, third, and fourth positions. For the fifth

digit, we have more limited choice. We have to pick the fifth digit so

that the sum of all five digits is divisible by three. Depending on the

first four digits, we can either choose one of 0,3,6, or one of 1,4,7, or

one of 2,5,8. Either way, this means three choices. The total number

of choices we have is 8 · 93 · 3 = 17496, so this is the number of 5-digit

positive integers that are divisible by three, but do not contain the

digit 9. Therefore, there are 30000 − 17496 = 12504 5-digit positive

integers that are divisible by three and do contain the digit 9.

(8) The number of all permutations of this multiset is given by Theorem

3.5, and is equal to 7!
2! = 2520. However, we have to subtract the

number of those permutations in which the two identical digits are

in consecutive positions. To count these, let us glue the two identical

digits together. Then we have six digits, which are all different, and

therefore Theorem 3.2 shows that they have 6! = 720 permutations.

Therefore, the number of all permutations of our multiset in which the

two identical digits are not in consecutive positions is 2520 − 720 =

1800.

(9) Just as in Exercise 8, let us glue the two 1s together. Then we simply

have to count permutations of the multiset {1, 2, 2, 3, 4, 5}. Theorem
3.5 shows that there are 6!

2! = 360 such permutations.

(10) There are
(
7
5

)
=
(
7
2

)
= 21 ways to choose five days of the week. Let us

now count the bad choices, that is, those that contain both Saturday

and Sunday. Clearly, there are
(
5
3

)
= 10 of these. Indeed, they contain

Saturday, Sunday, and three of the remaining five days. Therefore, the

number of good choices is 21− 10 = 11.

(11) As we only consider two scenarios different if they result in different

bonus payments, we are not interested in the order in which the dif-

ferent salespeople sold the seven cars. What matters is how many

cars each of them sold. Therefore, we are interested in the number of

7-element multisets whose elements are from the set [5]. By Theorem

3.21, this number is
(
5+7−1

7

)
=
(
11
7

)
=
(
11
4

)
= 330.

(12) There are 20!
5!·5!·5!·5! ways to visit four cities, each of them five times.
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Let us determine the number of ways to do this so that we start in

city A, and end in city A. In that case, we are free to choose the order

in which we make the remaining 18 visits. As three of those visits will

be to city A, and five will be to each of the remaining three cities, this

can be done in 18!
5!·5!·5!·3! ways. Obviously, the same argument applies

for the number of visiting arrangements that start and end in B, that

start and end in C, and that start and end in D. So the final answer

is

20!

5! · 5! · 5! · 5! − 4 · 18!

5! · 5! · 5! · 3! .

(13) No, that is not sure. There are
(
15
2

)
= 15·14

2 = 105 ways to pick two

courses out of 15 courses, and 30 years consist of 60 semesters only.

(14) Joe can make one of six choices on soup as he may decide not to order

soup at all. Similarly, he can make one of 11 choices on the main

course, and one of seven choices on dessert. So the total number of

possibilities is 6 · 11 · 7 = 462.

(15) Let us number the days of the semester from 1 to 105, and let us

denote the days when the student is in the lab by a1, a2, . . . , a5. Then

the conditions imply that a5 ≤ 95, and

1 ≤ a1 < a2 − 6 < a3 − 12 < a4 − 18 < a5 − 24 ≤ 95− 24 = 71.

Denote b1 = a1, b2 = a2−6, b3 = a3−12, b4 = a4−18, and b5 = a5−24.
Clearly, knowing the numbers bi is equivalent to knowing the numbers

ai.

Note that b5 ≤ 95 − 24 = 71. There is no additional requirement for

the numbers bi besides 1 ≤ b1 < b2 < b3 < b4 < b5, so there are
(
71
5

)
possible choices for the set of these numbers. Therefore, our student

can make this many choices.

(16)(a) There are 3! = 6 ways the contest could end, and there are seven

days in a week. We know, if from nowhere else, then from the title

of Chapter 1, that Seven Is More Than Six. Therefore, the pigeon-

hole principle implies that there were two contests with identical

results.

(b) If there were no ties at all, the contest could end in 4! = 24 different

ways. If there is a tie, it could only be at the second-third place.

The two people who tie can be chosen in
(
4
2

)
= 6 ways, then the

winner can be either of the remaining two people. So there are

6 ·2 = 12 different outcomes with a tie. Therefore the total number

of possible endings for the competition is 24 + 12 = 36. There are
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only 35 days in five weeks, so it is possible that there are no two

days when the contest ends the same way.

(c) Each tournament consists of six games as we have three choices

for the person leading the white pieces, and two choices leading

the black pieces. Each of these six games can have three different

results: either white wins, or black wins, or it is a draw. So there

are 36 = 729 ways the games of a tournament can end. Therefore,

the three friends will play for at most 730 days, which is exactly

two years as neither 2013, nor 2014 is a leap-year. So D was in fact

right, she was not exaggerating.

(17) Let bk+1 be a positive integer so that n =
∑k+1

i=1 bi. Theorem 3.5 then

tells us that

T =
n!

b1!b2! · · · bk+1!
is the number of linear orderings of n objects of k + 1 various kinds,

so that bi objects are of kind i. In particular, T = n!
b1!b2!···bk+1!

is a

positive integer, (as it is the number of elements in a nonempty set),

so
n!

b1!b2! · · · bk! = bk+1!T.

The right-hand side (and therefore, the left-hand side) is larger than

1 as long as one of T and bk+1 is larger than 1. The only way in which

T = 1 could hold would be if there were no two distinct objects at all,

but that is not possible since there is at least one object of type k+1,

and one other object. So we proved that not only b1!b2! · · · bk! < n!,

but also, b1b2 · · · bk is a proper divisor of n!.

(18) The number of all 6-digit integers is 900000 by Example 3.7. Again, we

are going to count those which do not satisfy the criteria, that is, those

with digit sum of at least 52. There are only four 6-element multisets of

digits that sum to at least 52, namely {9, 9, 9, 9, 9, 9}, {9, 9, 9, 9, 9, 8},
{9, 9, 9, 9, 9, 7}, and {9, 9, 9, 9, 8, 8}. Theorem 3.5 implies that they

have 1,6,6, and 15 multiset permutations (respectively), so altogether

there are 28 numbers out of 900000 that violate the criteria. So the

number of 6-digit positive integers that satisfy the criteria is 899972.

(19)(a) We have
(
30
11

)
choices for the soccer team. Then we have to choose

from the remaining 19 people in
(
19
5

)
ways for the basketball team.

Consequently, the final answer is
(
30
11

) · (195 ).
(b) If there is no restriction at all, then after choosing the soccer team,

we can choose the basketball team in
(
30
5

)
ways, from the set of all

students. So the total number of choices is
(
30
11

) · (305 ).
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(c) All
(
30
11

) · (195 ) team compositions (computed in the first part in this

exercise) in which no student is on two teams are certainly good.

Apart from these, there are those in which there is exactly one

student on both teams. We have 30 choices for this person, then

there are
(
29
10

) · (194 ) ways to choose the remaining players from the

rest of the class. Thus the total number of possibilities is(
30

11

)
·
(
19

5

)
+ 30 ·

(
29

10

)
·
(
19

4

)
.

(20) The digit that occurred three times could be any of ten digits. The

positions of its three occurrences could be any of the
(
6
3

)
= 20 three-

element subsets of [6]. The other three digits form a 3-digit word

over the remaining 9-letter alphabet without repetition, so we have

9 · 8 · 7 = 504 choices for them. As all these choices can be made

independently from each other, the total number of our choices is

10 · 20 · 504 = 100800. This is slightly more than ten percent of all

license plates, which would be 100000, so the police officer was a little

bit too optimistic.

(21) Let A be the country whose players scored, in totality, at most as many

points in the international games as players from the other country.

Take the n players from A, and let a1, a2, · · · , an denote the number of

points they accumulated against their countrymen. Let b1, b2, · · · , bn
be the number of points they accumulated against players from coun-

try B. Now assume that our claim is false, that is, ai < bi for all i. In

other words, ai ≤ bi − 0.5 for all i. Summing these inequalities over

all i ∈ [n], we get that

n∑
i=1

ai ≤
(

n∑
i=1

bi

)
− n/2. (3.4)

On the other hand, note that
∑n

i=1 ai = n(n−1)/2 as any two players

from A played each other once, and in each of those games, one point

was up for grabs. Comparing this with (3.4), we get

n(n− 1)

2
+

n

2
=

n2

2
≤
(

n∑
i=1

bi

)
. (3.5)

Similarly,

n∑
i=1

bi ≤ n2/2 (3.6)
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as players from A got at most half of all points that were available at

the international games.

Comparing (3.5) and (3.6) we see that
∑n

i=1 bi = n2/2 must hold.

That is,
∑n

i=1 bi is exactly n/2 larger than
∑n

i=1 ai. Therefore, equal-

ity holds in (3.4), and so equality must hold in all equations of the

type ai ≤ bi − 0.5. (Recall that (3.4) was obtained by taking the

sum of these equations for all i.) Therefore, for all i, we must have

ai = bi−0.5, meaning that the total score of the ith player from coun-

try A was ai + bi = 2a + 0.5, which is never an integer. Therefore,

no player from country A has a final score that is an integer. By the

very same argument, no player from country B has a final score that

is an integer. Indeed, in totality, players from B scored n2/2 points

against players from A, so the same argument works.

This is a contradiction as we know there are no two players with the

same final score. The number of possible non-integer final scores is

less than 2n: indeed, they are 0.5, 1.5, 2.5, · · · (2n − 1) − 0.5, which

is only 2n − 1 different scores for the 2n players. So there must be

a player who did better against his compatriots than against players

from the other country.

(22)(a) Let us change the scoring system of chess as follows: a player gets

one point for a win, zero points for a draw, and −1 points for a loss.

Clearly, this does not change the facts in our problem: people who

had different scores in the original scoring system have different

scores now, and people who had identical scores in the original

scoring system have identical scores now. Indeed, if player x won

ax games, got a draw bx times, and lost cx times, then his total

score in the old system is ax + (bx/2), and his total score in the

new system is ax − cx. Assume player y got the same total score

in the old system. That means

ax +
bx
2

= ay +
bx
2
.

Multiply this equation by 2, and subtract the equation ax+bx+cx =

ay + by + cy from it. (The latter simply shows that both players

played the same number of games.) We get

ax − cx = ay − cy,

which shows that the two players had the same score in the new

system, too.

Let us assume that all n players had different final scores. Let

k = n/2 if n is even, and let k = (n − 1)/2 if n is odd. Then we
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can assume without loss of generality that there are k players with

positive final scores. As these scores are all different, their sum is

at least 1+2+ · · ·+k = k(k+1)/2. As only wins result in positive

scores, there had to be at least k(k+1)/2 wins at the tournament.

The number of all games is, on the other hand,
(
n
2

)
. Therefore, the

ratio of wins (games not ended in a draw) and all games is

k(k + 1)

(n− 1)n
>

1

4
. (3.7)

(b) Yes, the same argument will work, except that the total number of

games played will be less than
(
n
2

)
, therefore the denominator in

formula (3.7) will decrease, therefore the ratio of wins will be even

larger.

(c) The problem with the previous argument here is that if not all

players complete the same number of games, then the new scoring

system is not the same as the classical one. Indeed, the argument

of part (a) would not work here as ax+bx+cx = ay+by+cy would

not hold. The statement is no longer true. A counterexample can

then be found for n = 4 as follows. Let games A−B, A−C end by

draws, and let game B −D be won by B. Then B has 1.5 points,

A has 1, C has 0.5, and D has 0. (Note that in the 1 − 0 − (−1)
scoring system, A and C would both have 0 points.)

(d) No. Our counterexample will be a generalization of the preceding

example, and also, of Example 1.7 of Chapter 1. Say we have n

players, (n is even) A1, A2, · · · , An−1 and B. Let An−1 play with

everyone, except for A1, let An−2 play with everyone except for A1

and A2, in general, let Ai play with Aj if i+ j > n, and let Ai play

with B if i > n/2. Let all these games end by a draw. Then Ai has

i/2 points for all i, and B has n
4 − 1

2 points. The only problem now

is that B has the same number of points as one of the players Ai.

To correct that, let B play with all the Ai he did not (there are n
2

of those), and defeat them all. Then B becomes a clear winner of

the tournament, and the points of the Ai do not change, so they

stay all different. Also note that the number of games played is

quadratic in n, whereas that of wins is linear in n, proving that the

ratio of draws can be arbitrarily close to 1 if n is large enough.

(23) First Solution. We can place the first rook anywhere on the board,

that is, we have 82 = 64 choices for its position. The second rook

cannot be in the row or column of the first one, leaving 72 = 49

choices for its position. Similarly, we will have 62 = 36 choices for
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the position of the third rook, and so on. Therefore, if our rooks were

distinguishable, we would have 82 · 72 · · · 12 = 8!2 ways to place them.

However, they are indistinguishable, so it does not matter which rook

is in which position as long as the set of all rooks covers the same eight

positions. Consequently, we have counted every placement n! times,

and the number of all placements is 8!2/8! = 8! = 40320.

Second solution. Each f : [8] → [8] can be bijectively associated

to a non-attacking rook placement as follows. For all i ∈ [8], put a

rook into the square (i, f(i)). This ensures that there will be exactly

one rook in each row and column. It is also easy to see that this is a

bijection, that is, all rook placements define one one-to-one function

from [8] onto itself. So the number of rook placements is n! by Exercise

1.

(24) Take any magic square of line sum r and side length 3. It is clear

that the four elements shown in the figure determine all the rest of

the square.

a

b

c

d

Indeed, the next table shows our only possible choice for each remain-

ing entry. Thus all we need to do is to compute the number of ways

we can choose a, b, c and d so that we indeed have that one choice, i.e.,
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the obtained entries of the magic square are all nonnegative.

a

b

c

d r − a− d

a+ d− c

r − b− db+ d− c

r + c−

(a+ d+ b)

The previous table shows that the entries of our matrix will be non-

negative if and only if the following inequalities hold:

a+ d ≤ r (3.8)

b + d ≤ r (3.9)

c ≤ a+ d (3.10)

c ≤ b+ d (3.11)

a+ d+ b− c ≤ r. (3.12)

We will consider three different cases, according to the position of the

smallest element on the main diagonal. In each of them, at least three

of the five conditions above will become redundant, and we will only

need to deal with the remaining one or two.

(a) Suppose 0 ≤ a ≤ b and 0 ≤ a ≤ c. In this case conditions (3.8),

(3.11), and (3.12) are clearly redundant, because they are implied

by (3.9) and (3.10).

The crucial observation is that in all the three cases we can collect

all our conditions into one single chain of inequalities. In this case

we do it as follows:

a ≤ 2a+ d− c ≤ a+ b+ d− c ≤ b+ d ≤ r. (3.13)
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Indeed, the first inequality is equivalent to (3.10), the second one

is equivalent to our assumption a ≤ b, the third one is equivalent

to our assumption a ≤ c, and the last one is equivalent to (3.9).

Moreover, note that once we know the terms of this chain, that is,

a, 2a+d− c, a+ b+d−c and b+d, then we know a, b, c and d, too,

thus we have determined the magic square. Thus all we need to

do is simply count how many ways there are to choose these four

terms. Inequality (3.13) shows that these terms are nondecreasing,

therefore the number of ways to choose them is simply the number

of 4-combinations of r+1 elements with repetitions allowed, which

is
(
r+4
4

)
. (Recall that 0 is allowed to be an entry.)

(b) Now suppose a > b and c ≥ b. Then (3.9), (3.11) and (3.12) are

redundant. Consider the chain of inequalities

b ≤ 2b+ d− c ≤ a+ b+ d− c− 1 ≤ a+ d− 1 ≤ r − 1. (3.14)

We can use the argument of the previous case to prove that (3.14)

equivalent to (3.8), (3.12) and our assumptions, as the roles of a

and b are completely symmetric. The only change is that here we

do not count those magic squares in which a = b, and this explains

the (−1) in the last three terms. Thus here we have to choose four

elements in non-decreasing order out of the set {0, 1, · · · , r − 1},
which can be done in

(
r+3
4

)
ways.

(c) Finally, suppose that a > c and b > c. Then (3.8), (3.9), (3.10)

and (3.11) are redundant. Condition (3.12) and our assumptions

can be collected into the following chain:

c ≤ b− 1 ≤ b+ d− 1 ≤ a+ b+ d− c− 2 ≤ r − 2. (3.15)

Here the first inequality is equivalent to our assumption c < b, the

second one says that d is nonnegative, the third one is equivalent

to our assumption c < a, and the last one is equivalent to (3.12).

The four terms of (3.15) determine a, b, c and d, and they can be

chosen in
(
r+2
4

)
ways, which completes the proof.

Thus the number of 3 × 3 magic squares of line sum r is indeed(
r+4
4

)
+
(
r+3
4

)
+
(
r+2
4

)
. Furthermore, the three terms in this sum count

the magic squares in which the (first) minimal element of the main

diagonal is the first, second, or third element.

(25) The set [15] has five elements divisible by three, five elements of the

form 3k + 1, and five elements of the form 3k + 2. Let S0, S1, and

S2 denote the sets of these elements. Then we can select one element
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or no element of S0, which gives us six possibilities. After this, we

can either not select any more elements, or we can select a non-empty

subset of S1 in 25− 1 = 31 ways, or we can select a non-empty subset

of S2 in 31 ways. So the total number of choices we have for selecting

elements from S1 and S2 is 1+31+31 = 63, leading to the final count

of 6 · 63 = 378.

(26) In such permutations, if an increasing subsequence starts, it must last

till the end. So, a permutation satisfies this requirement if and only if

it decreases all the way to its entry 1, then it increases all the way to

the end, like 421356. This means that the set S of entries on the left of

1 completely determines the permutation. As S can be any subset of

{2, 3, · · · , n}, there are 2n−1 possibilities for S, so that is the number

of permutations with the desired property.


