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Chapter 1

Seven Is More Than Six. The
Pigeon-Hole Principle

1.1 The Basic Pigeon-Hole Principle

Seven is more than six. Four is more than three. Two is more than one.

These statements do not seem to be too interesting, exciting, or deep. We

will see, however, that the famous Pigeon-hole Principle makes excellent use

of them. We choose to start our walk through combinatorics by discussing

the Pigeon-hole Principle because it epitomizes one of the most attractive

treats of this field: the possibility of obtaining very strong results by very

simple means.

Theorem 1.1 (Pigeon-hole Principle). Let n and k be positive inte-

gers, and let n > k. Suppose we have to place n identical balls into k

identical boxes. Then there will be at least one box in which we place at

least two balls.

Proof. While the statement seems intuitively obvious, we are going to give

a formal proof because proofs of this nature will be used throughout this

book.

We prove our statement in an indirect way, that is, we assume its con-

trary is true, and deduce a contradiction from that assumption. This is a

very common strategy in mathematics; in fact, if we have no idea how to

prove something, we can always try an indirect proof.

Let us assume there is no box with at least two balls. Then each of

the k boxes has either 0 or 1 ball in it. Denote by m the number of boxes

that have zero balls in them; then certainly m ≥ 0. Then, of course, there

are k −m boxes that have one. However, that would mean that the total

number of balls placed into the k boxes is k −m which is a contradiction

1
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because we had to place n balls into the boxes, and k − m ≤ k < n.

Therefore, our assumption that there is no box with at least two balls must

have been false.

In what follows, we will present several applications that show that this

innocuous statement is in fact a very powerful tool.

Example 1.2. There is an element in the sequence 7, 77, 777, 7777, · · · ,
that is divisible by 2003.

Solution. We prove that an even stronger statement is true, in fact, one of

the first 2003 elements of the sequence is divisible by 2003. Let us assume

that the contrary is true. Then take the first 2003 elements of the sequence

and divide each of them by 2003. As none of them is divisible by 2003,

they will all have a remainder that is at least 1 and at most 2002. As

there are 2003 remainders (one for each of the first 2003 elements of the

sequence), and only 2002 possible values for these remainders, it follows by

the Pigeon-hole Principle that there are two elements out of the first 2003

that have the same remainder. Let us say that the ith and the jth elements

of the sequence, ai and aj, have this property, and let i < j.

7777777777777777777777777
777777777777777777

7777777000000000000000000

j digits

i digits

i digits equal to 0
j-i digits equal to 7,

_

Fig. 1.1 The difference of aj and ai.

As ai and aj have the same remainder when divided by 2003, there exist

non-negative integers ki, kj , and r so that r ≤ 2002, and ai = 2003ki + r,

and aj = 2003kj + r. This shows that aj − ai = 2003(kj − ki), so in

particular, aj − ai is divisible by 2003.

This is nice, but we need to show that there is an element in our sequence

that is divisible by 2003, and aj − ai is not an element in our sequence.

Figure 1.1 helps understand why the information that aj − ai is divisible

by 2003 is nevertheless very useful.

Indeed, aj − ai consists of j − i digits equal to 7, then i digits equal to
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0. In other words,

aj − ai = aj−i · 10i,
and the proof follows as 10i is relatively prime to 2003, so aj−i must be

divisible by 2003.

In this example, the possible values of the remainders were the boxes,

all 2002 of them, while the first 2003 elements of the sequence played the

role of the balls. There were more balls than boxes, so the Pigeon-hole

Principle applied.

Example 1.3. A chess tournament has n participants, and any two players

play one game against each other. Then it is true that in any given point of

time, there are two players who have finished the same number of games.

Solution. First we could think that the Pigeon-hole Principle will not be

applicable here as the number of players (“balls”) is n, and the number of

possibilities for the number of games finished by any one of them (“boxes”)

is also n. Indeed, a player could finish either no games, or one game, or

two games, and so on, up to and including n− 1 games.

The fact, however, that two players play their games against each other,

provides the missing piece of our proof. If there is a player A who has com-

pleted all his n− 1 games, then there cannot be any player who completed

zero games because at the very least, everyone has played with A. There-

fore, the values 0 and n−1 cannot both occur among the numbers of games

finished by the players at any one time. So the number of possibilities for

these numbers (“boxes”) is at most n − 1 at any given point of time, and

the proof follows.

Quick Check

(1) Prove that among eight integers, there are always two whose difference

is divisible by seven.

(2) A student wrote six distinct positive integers on the board, and pointed

out that none of them had a prime factor larger than 10. Prove that

there are two integers on the board that have a common prime divisor.

Could we make the same conclusion if in the first sentence we replaced

”six” by ”five”?

(3) A bicycle path is 30 miles long, with four rest areas. Prove that either

there are two rest areas that are at most six miles from each other,
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or there is a rest area that is at most six miles away from one of the

endpoints of the path.

1.2 The Generalized Pigeon-Hole Principle

It is easy to generalize the Pigeon-hole Principle in the following way.

Theorem 1.4 (Pigeon-hole Principle, general version). Let n, m,

and r be positive integers so that n > rm, and let us distribute n iden-

tical balls into m identical boxes. Then there will be at least one box into

which we place at least r + 1 balls.

Proof. Just as in the proof of Theorem 1.1, we assume the contrary state-

ment. Then each of the m boxes can hold at most r balls, so all the boxes

can hold at most rm < n balls, which contradicts the requirement that we

distribute n balls.

It is certainly not only in number theory that the Pigeon-hole Princi-

ple proves to be very useful. The following example provides a geometric

application.

Example 1.5. Ten points are given within a square of unit size. Then

there are two of them that are closer to each other than 0.48, and there are

three of them that can be covered by a disk of radius 0.5.

Solution. Let us split our unit square into nine equal squares by straight

lines as shown in Figure 1.2. As there are ten points given inside the nine

small squares, Theorem 1.1 implies that there will be at least one small

square containing two of our ten points. The longest distance within a

square of side length 1/3 is that of two opposite endpoints of a diagonal.

By the Pythagorean theorem, that distance is
√
2
3 < 0.48, so the first part

of the statement follows.

To prove the second statement, divide our square into four equal parts

by its two diagonals as shown in Figure 1.3. Theorem 1.4 then implies that

at least one of these triangles will contain three of our points. The proof

again follows as the radius of the circumcircle of these triangles is shorter

than 0.5.
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Fig. 1.2 Nine small squares for ten points.

Fig. 1.3 Four triangles for ten points.

We finish our discussion of the Pigeon-hole Principle by two highly sur-

prising applications. What is striking in our first example is that it is valid

for everybody, not just say, the majority of people. So we might as well

discuss our example choosing the reader herself for its subject.
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Example 1.6. During the last 1000 years, the reader had an ancestor A

such that there was a person P who was an ancestor of both the father and

the mother of A.

Solution. Again, we prove our statement in an indirect way: we assume

its contrary, and deduce a contradiction. We will use some rough estimates

for the sake of shortness, but they will not make our argument any less

valid.

Take the family tree of the reader. This tree is shown in Figure 1.4.

Parents

The reader

Grandparents

Fig. 1.4 The first few levels of the family tree of the reader.

The root of this tree is the reader herself. On the first level of the tree,

we see the two parents of the reader, on the second level we find her four

grandparents, and so on. Assume (for shortness) that one generation takes

25 years to produce offspring. That means that 1000 years was sufficient

time for 40 generations to grow up, yielding 1+ 2+22+ · · ·+240 = 241− 1

nodes in the family tree. If any two nodes of this tree are associated to the

same person B, then we are done as B can play the role of P .

Now assume that no two nodes of the first 40 levels of the family tree

coincide. Then all the 241 − 1 nodes of the family tree must be distinct.

That would mean 241 − 1 distinct people, and that is a lot more than the

number of all people who have lived in our planet during the last 1000 years.

Indeed, the current population of our planet is less than 1010, and was much

less at any earlier point of time. Therefore, the cumulative population of

the last 1000 years, or 40 generations, was less than 40 ·1010 < 241− 1, and

the proof follows by contradiction.
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Our assumption that every generation takes 25 years to produce off-

spring was a realistic one. Given that by all available data, the average

life expectancy of humans is longer today than ever before, 25 seems to

be a high-end estimate. The reader should spend a little time thinking

about how (and if) the argument would have to be modified if 25 were to

be replaced by a smaller or larger number.

Our last example comes from the theory of graphs, an extensive and

important area of combinatorics to which we will devote several chapters

later.

Example 1.7. Mr. and Mrs. Smith invited four couples to their home.

Some guests were friends of Mr. Smith, and some others were friends of Mrs.

Smith. When the guests arrived, people who knew each other beforehand

shook hands, those who did not know each other just greeted each other.

After all this took place, the observant Mr. Smith said “How interesting.

If you disregard me, there are no two people present who shook hands the

same number of times”.

How many times did Mrs. Smith shake hands?

Solution. The reader may well think that this question cannot be an-

swered from the given information any better than say, a question about

the age of the second cousin of Mr. Smith. However, using the Pigeon-

hole Principle and a very handy model called a graph, this question can be

answered.

To start, let us represent each person by a node, and let us write the

number of handshakes carried out by each person except Mr. Smith next to

the corresponding vertex. This way we must write down nine different non-

negative integers. All these integers must be smaller than nine as nobody

shook hands with himself/herself or his/her spouse. So the numbers we

wrote down are between 0 and 8, and since there are nine of them, we must

have written down each of the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8 exactly once.

The diagram we have constructed so far can be seen in Figure 1.5.

Now let us join two nodes by a line if the corresponding two people

shook each other’s hands. Such a diagram is called a graph, the nodes are

called the vertices of the graph, and the lines are called the edges of the

graph. So our diagram will be a graph with ten vertices.

Let us denote the person with i handshakes by Yi. (Mr. Smith is not

assigned any additional notation.) Who can be the spouse of the person

Y8? We know that Y8 did not shake the hand of only one other person,
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8

7

6

5

4

3

2

1

0

Mr. Smith

Fig. 1.5 The participants of the party.

so that person must have been his or her spouse. On the other hand, Y8

certainly did not shake the hand Y0 as nobody did that. Therefore, Y8 and

Y0 are married, and Y8 shook everyone’s hand except for Y0. We represent

this by joining his vertex to all vertices other than Y0. We also encircle Y8

and Y0 together, to express that they are married.

Mr. Smith
8

7

6

5

4

3

2

1

0

Fig. 1.6 Y8 and Y0 are married.

Now try to find the spouse of Y7, the person with seven handshakes. This

person did not shake the hands of two people, one of whom was his/her
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spouse. Looking at Figure 1.6, we can tell who these two people are. One

of them is Y0 as he or she did not shake anyone’s hand, and the other one is

Y1 as he or she had only one handshake, and that was with Y8. As spouses

do not shake hands, this implies that the spouse of Y7 is either Y0 or Y1.

However, Y0 is married to Y8, so Y1 must be married to Y7.

8

7

6

5

4

3

2

1

0

Mr. Smith

Fig. 1.7 Y1 and Y7 are married.

By a similar argument that the reader should be able to complete, Y6

and Y2 must be married, and also, Y5 and Y3 must be married. That implies

that by exclusion, Y4 is Mrs. Smith, therefore Mrs. Smith shook hands four

times.

How did we obtain such a strong result from “almost no data”? The

truth is that the data we had, that is, that all people except Mr. Smith

shook hands a different number of times, is quite restrictive. Indeed, con-

sider Example 1.3 again. An obvious reformulation of that Example shows

that it is simply impossible to have a party at which no two people shake

hands the same number of times (as long as no two people shake hands

more than once). Example 1.7 relaxes the “all-different-numbers” require-

ment a little bit, by waiving it for Mr. Smith. Our argument then shows

that with that extra level of freedom, we can indeed have a party satisfying

the new, weaker conditions, but only in one way. That way is described by

the graph shown in Figure 1.8.
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Mr.Smith
8

7

6

5

4

3

2

1

0

Fig. 1.8 Mrs. Smith shook hands four times.

Quick Check

(1) The product of five given polynomials is a polynomial of degree 21.

Prove that we can choose two of those polynomials so that the degree

of their product is at least nine.

(2) A college has 39 departments, and a total of 261 faculty members in

those departments. Prove that there are three departments in this

college that have a total of at least 21 faculty members.

(3) Let n be a positive integer that has exactly three prime divisors, and

at least seven divisors of the form pk, where p is a prime, and k is

a positive integer. Prove that n must be divisible by the cube of an

integer that is larger than 1.

Exercises

(1) A busy airport sees 1500 takeoffs per day. Prove that there are two

planes that must take off within a minute of each other.

(2) Find all triples of positive integers a < b < c for which

1

a
+

1

b
+

1

c
= 1

holds.
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(3) We have selected 169 points inside a regular triangle of side length 100

at random. Prove that there will be three among the selected points

that span a triangle of area at most 68.

(4) (+) We have distributed two hundred balls into one hundred boxes with

the restrictions that no box got more than one hundred balls, and each

box got at least one. Prove that it is possible to find some boxes that

together contain exactly one hundred balls.

(5) (+) Last year, the Division One basketball teams played against an

average of eighteen different opponents. Is it possible to find a group

of teams so that each of them played against at least ten other teams

of the group?

(6)(a) The set M consists of nine positive integers, none of which has a

prime divisor larger than six. Prove that M has two elements whose

product is the square of an integer.

(b) (+) (Some knowledge of linear algebra and abstract algebra re-

quired.) The set A consists of n+1 positive integers, none of which

has a prime divisor that is larger than the nth smallest prime num-

ber. Prove that there exists a non-empty subset B ⊆ A so that the

product of the elements of B is a perfect square.

(7) (++) The set L consists of 2003 integers, none of which has a prime

divisor larger than 24. Prove that L has four elements, the product of

which is equal to the fourth power of an integer.

(8) (+) The sum of one hundred given real numbers is zero. Prove that

at least 99 of the pairwise sums of these hundred numbers are non-

negative. Is this result the best possible one?

(9) (+) We colored all points of R2 with integer coordinates by one of six

colors. Prove that there is a rectangle whose vertices are monochro-

matic. Can we make the statement stronger by limiting the size of the

purported monochromatic rectangle?

(10) Prove that among 502 positive integers, there are always two integers

so that either their sum or their difference is divisible by 1000.

(11) (+) We chose n+2 numbers from the set 1, 2, · · · , 3n. Prove that there
are always two among the chosen numbers whose difference is more

than n but less than 2n.

(12) There are four heaps of stones in our backyard. We rearrange them

into five heaps. Prove that at least two stones are placed into a smaller

heap.

(13) There are infinitely many pieces of paper in a basket, and there is a

positive integer written on each of them. We know that no matter how
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we choose infinitely many pieces, there will always be two of them so

that the difference of the numbers written on them is at most ten mil-

lion. Prove that there is an integer that has been written on infinitely

many pieces of paper.

(14) (+)

(a) A soccer team played 30 games this year, and scored a total of 53

goals, scoring at least one goal in each game. Prove that there was

a sequence of consecutive games in which the team scored exactly

six goals.

(b) Prove that the claim of part (a) does not hold for a team that scored

60 goals, with the other parameters unchanged.

(c) Prove that the claim of part (a) does hold for a team that scored 59

goals, with the other parameters unchanged.

(15) (+) The set of all positive integers is partitioned into several arithmetic

progressions. Show that there is at least one among these arithmetic

progressions whose initial term is divisible by its difference.

(16) Sixty-five points are given inside a square of side length 1. Prove that

there are three of them that span a triangle of area at most 1/32.

(17) Let A be an n × n matrix with 0 and 1 entries only. Let us assume

that n ≥ 2, and that at least 2n entries are equal to 1. Prove that A

contains two entries equal to 1 so that one of them is strictly above and

strictly on the right of the other.

(18) A state has seven counties. In one year, three candidates run in a

statewide election. Is it possible that in each county the same number

of people vote, and the candidate who gets the highest number of votes

statewide does not get the highest number of votes in any county?

Supplementary Exercises

(19) (-) Prove that every year contains at least four and at most five months

that contain five Sundays.

(20) (-) A soccer league features 17 games for today. Let us assume that no

team will score more than three goals. Prove that there will be a result

that will occur more than once. (A result consists of the number of

goals scored by the home team, followed by the number of goals scored

by the visiting team. So 3-2 and 2-3 are considered different scores.)

(21) (-) A group of seven co-workers are trying to predict the total number

of points scored in a given basketball game. The first six people al-
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ready took their guesses, and, curiously, they all picked distinct even

numbers. Mr. Slow is the last person to guess, and he knows all pre-

vious guesses. Is there a strategy for him that assures that his guess

will be better than the guesses of half of his colleagues?

(22) (-) A soccer team scored a total of 40 goals this season. Nine players

scored at least one of those goals. Prove that there are two players

among those nine who scored the same number of goals.

(23)(a) In the month of April, Ms. Consistent went to the swimming pool

26 times, though she never went more than once on the same day.

Is it true that there were six consecutive days when she went to the

swimming pool?

(b) Same as (a), but for the month of May instead of April.

(24)(a) We select 11 positive integers that are less than 29 at random.

Prove that there will always be two integers selected that have a

common divisor larger than 1.

(b) Is the statement of part (a) true if we only select ten integers that

are less than 29?

(25) Prove that there exists a positive integer n so that 44n− 1 is divisible

by 7.

(26) The sum of five positive real numbers is 100. Prove that there are two

numbers among them whose difference is at most 10.

(27) Find all 4-tuples (a, b, c, d) of distinct positive integers so that a < b <

c < d and

1

a
+

1

b
+

1

c
+

1

d
= 1.

(28) Complete the following sentence, that is a generalization of the Pigeon-

hole Principle to real numbers. “If the sum of k real numbers is n,

then there must be one of them which is...”. Prove your claim.

(29) We are given 17 points inside a regular triangle of side length one.

Prove that there are two points among them whose distance is not

more than 1/4.

(30) Prove that the sequence 1967, 19671967, 196719671967, · · · , contains
an element that is divisible by 1969.

(31) A teacher receives a paycheck every two weeks, always the same day

of the week. Is it true that in any six consecutive calendar months she

receives exactly 13 paychecks?

(32) (+) Let T be a triangle with angles of 30, 60 and 90 degrees whose

hypotenuse is of length 1. We choose ten points inside T at random.

Prove that there will be four points among them that can be covered
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by a half-circle of radius 0.42.

(33) We select n + 1 different integers from the set {1, 2, · · · , 2n}. Prove

that there will always be two among the selected integers whose largest

common divisor is 1.

(34)(a) Let n ≥ 2. We select n + 1 different integers from the set

{1, 2, · · · , 2n}. Is it true that there will always be two among the

selected integers so that one of them is equal to twice the other?

(b) Is it true that there will always be two among the selected integers

so that one is a multiple of the other?

(35) One afternoon, a mathematics library had several visitors. A librarian

noticed that it was impossible to find three visitors so that no two of

them met in the library that afternoon. Prove that then it was possible

to find two moments of time that afternoon so that each visitor was

in the library at one of those two moments.

(36) (+) Let r be any irrational real number. Prove that there exists a

positive integer n so that the distance of nr from the closest integer

is less than 10−10.

(37) Let p and q be two positive integers so that the largest common divisor

of p and q is 1. Prove that for any non-negative integers s ≤ p − 1

and t ≤ q − 1, there exists a non-negative integer m ≤ pq so that if

we divide m by p, the remainder is s, and if we divide m by q, the

remainder is t.

(38) Does the statement of Exercise 17 remains true if we only assume that

A has at least 2n− 1 entries equal to 1?

(39) (++) Let K denote the 1000 points in the three-dimensional space

whose coordinates are all integers in the interval [1, 10]. Let S be a

subset of K that has at least 272 points. Prove that S contains two

points u and v so that each coordinate of v is strictly larger than the

corresponding coordinate of u.

(40) Six points are given on the perimeter of a circle of radius 1. Prove

that there are two among the given points whose distance from each

other is at most 1.

Solutions to Exercises

(1) There are 1440 minutes per day. If our 1440 minutes are the boxes,

and our 1500 planes are the balls, the Pigeon-hole Principle says that

there are two balls in the same box, that is, there are two planes that
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take off within a minute of each other.

(2) It is clear that a = 2. Indeed, a = 1 is impossible because then the

left-hand side would be larger than 1, and a ≥ 3 is impossible as

a < b < c implies 1
a > 1

b > 1
c , so a = 3 would imply that the left-hand

side is smaller than 1. Thus we only have to solve

1

b
+

1

c
=

1

2
,

with 3 ≤ b < c. We claim that b must take its smallest possible value,

3. Indeed, if b ≥ 4, then c ≥ 5, and so 1
b +

1
c ≤ 1

4 +
1
5 < 1

2 . Thus b = 3,

and therefore, c = 6.

(3) Split the original regular triangle into 64 congruent triangles, by re-

peatedly using the method of midlines. Each of these small triangles

will have area 67.658. On the other hand, by the Pigeon-hole Princi-

ple, at least one of these triangles must contain at least three of the

selected points.

(4) Arrange our boxes in a line so that the first two boxes do not have

the same number of balls in them. We can always do this unless all

boxes have two balls, in which case the statement is certainly true.

Let ai denote the number of balls in box i, for all positive integers

1 ≤ i ≤ 100. Now look at the following sums: a1, a1+a2, a1+a2+a3,

· · · , a1+a2+ · · ·+a100. If two of them yield the same remainder when

divided by 100, then take the difference of those two sums. That will

yield a sum of type ai+ai+1+· · ·+aj that is divisible by 100, is smaller

than 200, and is positive. In other words, ai + ai+1 + · · ·+ aj = 100,

so the total content of boxes i, i+ 1, · · · , j is exactly 100 balls.

Now assume this does not happen, that is, all sums a1 + a2 + · · · +
ak yield different remainders when divided by 100. Attach the one-

element sum a2 to our list of sums. Now we have 101 sums, so by

Theorem 1.1, two of them must have the same remainder when divided

by 100. Since we assumed this did not happen before a2 joined the list,

we know that there is a sum S on our list that has the same remainder

as a2. As we know that a1 �= a2, we also know that S �= a1, and we are

done as in the previous paragraph, since S− a2 = a1+ a3 + · · ·+ at =

100.

We note that this argument works in general with 2n boxes and 4n

balls. We also note that we in fact proved a stronger statement as our

chosen boxes are almost consecutive.

(5) Yes. Take a team T that played against at most nine opponents. If

there is no such team, then the group of all Division One teams has the
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required property, and we are done. Omit T ; we claim that this will

not decrease the average number of opponents. Indeed, as we are only

interested in the number of opponents played (and not games), we

can assume that any two teams played each other at most once. The

18-game-average means that all the m Division One teams together

played 9m games as a game involves two teams. Omitting T , we are

left with m − 1 teams, who played a grand total of at least 9m − 9

games. This means that the remaining teams still played at least 18

games on average against other remaining teams.

Now iterate this procedure- look for a team from the remaining group

that has only played nine games and omit it. As the number of teams

is finite, this elimination procedure has to come to an end. The only

way that can happen is that there will be a group of which we cannot

eliminate any team, that is, in which every team has played at least

ten games against the other teams of the group.

(6)(a) Each element of M can be written as 2i3j5k for some non-negative

integers i, j, k. Therefore, we can divide the elements of M into

eight classes according to the parity of their exponents i, j, k. By

the Pigeon-hole Principle, there will be two elements of M , say x

and y, that are in the same class. As the sum of two integers of

the same parity is even, this implies that x · y = 22a32b52c for some

non-negative integers a, b, c, therefore, xy = (2a3b5c)2.

(b) The n + 1 elements of A can be considered as elements of an n-

dimensional vector space over the binary field. Let B be a linearly

dependent subset of A, then the product of all elements of B is a

perfect square since all prime factors must occur in that product

an even number of times in that product.

(7) If we try to copy the exact method of the previous problem, we may

run into difficulties. Indeed, the elements of L can have nine different

prime divisors, 2, 3, 5, 7, 11, 13, 17, 19, 23. If we classify them according

to the remainder of the exponents of these prime divisors modulo four,

we get a classification into 49 > 2003 classes. So it seems that it is

not even sure that there will be a class containing two elements of L,

let alone four.

The reason this attempt did not work is that it tried to prove too

much. For the product of four integers to be a fourth power, it is

not necessary that the exponents of each prime divisor have the same

remainder modulo four in each of the four integers. For example,

1,1,2,8 do not have that property, but their product is 16 = 24.
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A more gradual approach is more successful. Let us classify the ele-

ments of L again just by the parity of the exponents of the nine pos-

sible prime divisors in them. This classification creates just 29 = 512

classes. Now pick two elements of L that are in the same class, and

remove them from L. Put their product into a new set L′. This pro-
cedure clearly decreased the size of L by 2. Then repeat this same

procedure, that is, pick two elements of L that are in the same class,

remove them, and put their product into L′. Note that all elements

of L′ will be squares as they will contain all their prime divisors with

even exponents. Do this until you can, that is, until there are no two

elements of L in the same class. Stop when that happens. Then L

has at most 511 elements left, so we have removed at least 1492 ele-

ments from L. Therefore L′ has at least 746 elements, all of which are

squares of integers.

Now classify the elements of L′ according to the remainders of the

exponents of their prime divisors modulo four. As the elements of

L′ are all squares, all these exponents are even numbers, so their

remainders modulo four are either 0 or 2. So again, this classification

creates only 512 classes, and therefore, there will be two elements of

L′ in the same class, say u and v. Then uv is the fourth power of an

integer, and since both u and v are products of two integers in L, our

claim is proved.

(8) First Solution: Let a1 ≤ a2 ≤ · · · ≤ a100 denote our one hundred

numbers. We will show 99 non-negative sums. We have to distinguish

two cases, according to the sign of a50 + a99. Assume first that a50 +

a99 ≥ 0. Then we have

0 ≤ a50 + a99 ≤ a51 + a99 ≤ a52 + a99 ≤ · · · ≤ a100 + a99,

providing 51 non-negative sums. On the other hand, for any i so that

50 ≤ i ≤ 100, we now have

0 ≤ ai + a99 ≤ ai + a100,

providing the new non-negative sums a50 + a100, a51 + a100, · · · , a98 +
a100, which is 49 new sums, so we have found 100 non-negative sums.

Now assume that a50 + a99 < 0. Then necessarily

a1 + a2 + · · ·+ a49 + a51 + · · ·+ a98 + a100 > 0. (1.1)

In this case we claim that all sums ai + a100 are non-negative. To

see this, it suffices to show that the smallest of them, a1 + a100 is

non-negative. And that is true as

0 > a50 + a99 ≥ a49 + a98 ≥ a48 + a97 ≥ · · · ≥ a2 + a51,
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and therefore the left-hand side of (1.1) can be decomposed as the

sum of a1 + a100, and 48 negative numbers. So a1 + a100 is positive,

and the proof follows.

Second Solution: It is well known from everyday life that one can

organize a round robin tournament for 2n teams in 2n − 1 rounds,

so that each round consists of n games, and that each team plays a

different team each round. A rigorous proof of this fact can be found

in Chapter 2, Exercise 4. Now take such a round robin tournament,

and replace the teams with the numbers a1, a2, · · · , a100. So the fifty

games of each round are replaced by fifty pairs of type ai+aj. As each

team plays in each round, the sum of the 100 numbers, or 50 pairs,

in any given round is zero. Therefore, at least one pair must have a

non-negative sum in any given row, otherwise that row would have a

negative sum.

This result is the best possible one: if a100 = 99, and ai = −1 if

1 ≤ i ≤ 99, then there will be exactly 99 non-negative two-element

sums.

(9) There is only a finite number of choices for the color of each point, so

there is only a finite number F of choices to color the integer points

of a 7× 7 square. Now take a column built up from F + 1 squares of

size 7 × 7 that have the same x coordinates. (They are “above one

another”.) By the Pigeon-hole Principle, two of them must have the

very same coloring. This means that if the first one has two points of

the same color in the ith and jth positions, then so does the second,

and a monochromatic rectangle is formed. The Pigeon-hole Principle

ensures that such i and j always exist, and the proof follows. In fact,

we also proved that there will always be a monochromatic rectangle

whose shorter side contains at most 7 points with integer coordinates.

(10) Consider the remainders of each of the given integers modulo 1000,

and the opposites of these remainders modulo 1000. Note that if an

integer is not congruent to 0 or 500 modulo 1000, then its remainder

and opposite remainder modulo 1000 are two different integers.

We distinguish two cases. First, if at least two of our integers are

divisible by 1000, or if at least two of our integers have remainder 500

modulo 1000, then the difference and sum of these two integers are

both divisible by 1000, and we are done.

If there is at most one among our integers that is divisible by 1000,

and there is at most one among our integers that has remainder 500

modulo 1000, then we have at least 500 integers that do not fall into
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either category. Consider their remainders and opposite remainders

modulo 1000, altogether 1000 numbers. They cannot be equal to 0

or 500, so there are only 998 possibilities for them. Therefore, the

Pigeon-hole Principle implies that there must be two equal among

them, and the proof follows.

(11) Denote 3n − a the largest chosen number (it could be that a = 0).

Let us add a to all our chosen numbers; this clearly does not change

their pairwise differences. So now 3n is the largest chosen number.

Therefore, if any number from the interval [n + 1, 2n − 1] is chosen,

we are done. Otherwise, we had to choose a total of n + 1 numbers

from the intervals [1, n] and [2n, 3n− 1]. Consider the n pairs

(1, 2n); (2, 2n+ 1); · · · ; (i, i+ 2n− 1), · · · ; (n, 3n− 1).

As there are n such pairs, and we chose n + 1 integers, there is one

pair with two chosen elements. The difference of those two chosen

elements is 2n− 1, and our claim is proved.

(12) Let the numbers of stones in the original four heaps be a1 ≥ a2 ≥
a3 ≥ a4, and let the numbers of stones in the five new heaps be

b1 ≥ b2 ≥ b3 ≥ b4 ≥ b5. Then a1 + a2 + a3 + a4 > b1 + b2 + b3 + b4.

Let k be the smallest index so that a1 + · · ·+ ak > b1 + · · ·+ bk. (It

follows from the previous sentence that there is such an index.) This

implies that ak > bk. Then the stones from the k largest old heaps

could not all go to the k largest new heaps. (Indeed, there are too

many of them.) In fact, note that a1 + · · ·+ ak > b1 + · · ·+ bk−1 + 1.

So at least two of these stones had to go to a heap with bk stones or

less, and we are done as a1 ≥ · · · ≥ ak > bk ≥ bk+1 ≥ · · · ≥ b5.

(13) Assume the contrary, that is, that each positive integer appears on a

finite number of pieces only. As we have an infinite number of pieces,

this means that there is an infinite sequence of different positive inte-

gers a1 < a2 < a3 < · · · so that each ai appears on at least one piece

of paper. Then the subsequence a1, a107+1, a2·107+1, a3·107+1, · · · , is
an infinite set in which any two elements differ by at least ten million.

As all elements of this subsequence appear on some pieces of paper,

we have reached a contradiction.

(14)(a) Let ai denote the number of goals the team scored in the ith game.

Consider the 30 numbers bi = a1 + a2 + · · ·+ ai for all i satisfying

1 ≤ i ≤ 30, and the 30 numbers bi + 6 for 1 ≤ i ≤ 30. This is a

collection of 60 numbers, each of which is a positive integer, and

none of which is larger than 53 + 6 = 59. So by the Pigeon-hole
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Principle, two of these numbers are equal. One of them must be

bi and the other must be bj + 6 for some j < i, since all the bi are

different. Then the team scored exactly six goals total in games

j + 1, j + 2, · · · , i.
(b) A counterexample is given by the sequence 2, 1, 2, 2, 3, 2, repeated

four more times, for the numbers a1, a2, · · · as defined in the solu-

tion of part (a). Another counterexample is given by the sequence

1, 1, 1, 1, 1, 7 repeated four more times.

(c) Let the numbers ai and bi be defined as in the solution of part

(a). Let us assume that our claim does not hold. Consider the

sequence of the ten integers F = {1, 7, 13, · · · , 55}. Let B denote

the sequence b1, b2, · · · , b30.
At most five elements of F can be elements ofB since no two consec-

utive elements of F can be part B. Similarly, at most five elements

of the sequence 2, 8, · · · , 56 can be part of B. The same goes for the

sequence 3, 9, · · · , 57, the seqeunce 4, 10, · · · , 58, and the sequence

5, 11, · · · , 59. Therefore, since B consists of 30 positive integers,

the largest of which is 59, the sequence of the remaining positive

integers not larger than 60, that is, the sequence 6, 12, · · · , 54 must

contain at least five elements of B. If our claim does not hold, then

6 /∈ B, so the eight-element sequence S = {12, 18, · · · , 54} contains
at least five numbers bi. That means that the there are two con-

secutive elements of S that are part of B, which is a contradiction.

(15) Let a1, a2, · · · , ak be the initial terms of our k progressions, and let

d1, d2, · · · , dk be their differences. The number d1d2 · · · dk is an ele-

ment of one of these progressions, say, the ith one. Therefore, there

is a positive integer m so that

d1d2 · · · dk = ai +mdi,

d1d2 · · · dk −mdi = ai.

So ai is divisible by di. This problem had nothing to do with the

Pigeon-hole Principle. We included it to warn the reader that not all

that glitters is gold. Just because we have to prove that one of many

objects has a given property, we cannot necessarily use the Pigeon-hole

Principle.

(16) Let us cut the square into two congruent triangles using one of its

diagonals; then cut each of these triangles into 16 congruent triangles

using the method of midlines. This yields 32 congruent triangles of
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area 1/32 each. As we have 65 > 2 · 32 points, by the generalized

version of the Pigeon-hole principle, at least one of these 32 triangles

must contain at least three of our points.

(17) Let us call a set of entries of A a diagonal if they form the intersection

of A with a line of slope 1. There are 2n − 1 such diagonals in A,

and each entry belongs to exactly one of them. (Indeed, the diagonals

are obtained as intersections of the lines y = x + a with A, where

a ∈ [−(n− 1), n− 1] is an integer.) As there are 2n− 1 diagonals and

at least 2n entries equal to 1, at least one diagonal contains at least

two entries 1, and the statement is proved.

(18) Yes. Here is an example. Let us assume that in each county, 100 people

vote. Candidate A gets 40 votes in each county. Candidate B gets 50

votes in three counties, and 10 votes in the remaining four counties,

while candidate C gets 10 votes in the first three counties, and 50 votes

in the remaining four counties. This means that statewide, candidate

A gets 280 votes, candidate B gets 190 votes, and candidate C gets

230 votes.


