Math 320 The Exponential Function Summer 2015

The Exponential Function

In this section we will define the Exponential function by the rule

i T\
<1> exo(a) = Jim (14 7)

Along the way, prove a collection of intermediate results, many of which are important in their own right.

Proposition 1. There exists a real number, 2 < e < 4 such that

1 n
<1+—> S e as n— oo
n

Remark. The notation b,, /b as n — oo is shorthand for b,, < by,41 and lim,, o0 by, = b.

The limit e, called Euler’s Constant, can be approximated to a high degree of accuracy. For example,
e = 2.718281828459045235360287471352662497757247093699959

to 50 decimal places.

Before we prove Proposition 1, we need a few intermediate results. If ¢ > —1 then
(2) (I+a)">1+na,

for n € N. This is known as Bernoulli’s Inequality. We will prove this by induction on n. For n =1
we actually have equality. Now suppose that (2) holds for n = k. Then

(14 a)** = (1+a)*(1 +a)
> (1+ka)(1+a), (since 1 +a > 0)
=1+ka+a+ka®
>14+(k+1)a

Here the last inequality follows since ka® > 0 and (2) is established.

Lemma 2. For n € N we have
(i) (1+1/n)" is increasing.
(ii) (1+1/n)"*! is decreasing.

(i) 2< (L+1/n)" < (L+1/n)""" <4
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Proof. To prove (i) we let b, = (1 + 1/n)". We need to show that b, < b,4;. Thus

n+1
bp+1 (1 + n+1)

b

M(@)
n

(1+5)n+1
(nz’l;f’i ) (1)
() (+3)
( ) (). (by (2)

n+ 1 n nn+1)

=1

The proof of (ii) is similar. The middle inequality in (iii) is obvious since (1 +n7') > 1. Also, direct
calculation and (i) shows that

!
2:(1+I) =b; < by, forallneN

The right-hand inequality is obtained in a similar fashion. O

Proof (of Proposition 1). This follows immediately from Lemma 2 and the Monotone Convergence
Theorem. O

Note: From Proposition 1 we see that

n
3) (1 + l) <e, for all n € N
n

Lemma 3. Let n € N and j € Z with 0 < j <n. Then

= ()3

Proof. Let b], denote the right-hand side of (4). Then b2 = b} =1 for all n € N. Now for 1 < j < n, a
routine calculatlon yields

. . (n+1)! ; i .
oo =B T g g (DT =)
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So it’s enough to show the quantity in brackets is not less than 0. Now
nd — (n+ 1)171(71+ 1—j)= nd — (n+ 1)7 +iln+ 1)-7"1
=jn+ 1) = {4 P+ 1)+ 4 (n+ 1))
={n+1Y "=} 4+ {n+ 1) =P+ D)} 4
ot {1 = (e 1))
>0

since each of the braced quantities is nonnegative. This proves the lemma. O
Proposition 4. A monotone sequence {b,,} converges if and only if it contains a convergent subsequence.

Proof. The only if part is clear. Now suppose that {b,} is an increasing sequence with a convergent
subsequence, say {b,, } and let M > 0. If {b,} is not bounded above, then there is an N € N such that
by > M. It follows that for all n > N, b, > by > M. Hence {by, } is not bounded above. This is
impossible. The result now follows by the Monotone Convergence Theorem. O

Lemma 5. Let > 0. Then for each n € N

(5) (1+%)n§<1+nil>n+l

Proof. We clearly have equality when « = 0. Now suppose that > 0 and let

an(x) = (1 + %)n

From the Binomial Theorem and borrowing the notation from Lemma 3 we have

S0 g

j=0

Then
ntl n
api1(z) — ap(z) = Z b2l — Zb’ z
j=0 j=0
n n+1
; x
- _ .
(b:"‘“ bi) o (7L+1)
7=0
n .
= (bZ:,Jrl - b::) z’
7=0
>0
Here the last two lines follow from Lemma 3 and the fact #7 > 0. This establishes (5). 0
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Lemma 6. Let p,q € N. Then

n
(6) lgn (1 + m) = ePld
n—00 n
n
(7) lim (1 - M) =P
n—roo n

Proof. Let p,q € N and define

Also, let a,, = a,(1) and k € N. Then

So by Proposition 1,

It follows that

p/a\"
li =1 14 =—
i, axp (2/9) k;“;c( * kp)

1\ ke p/a
= lim {(1 + —) }
k—o0 kq

)p/ q

= lim (a,
k—o0 ( k
— ¢Pla

Thus ag,(p/q) is a convergent subsequence of the increasing sequence a,(p/q). Hence (6) now follows by
Proposition 4.

The limit in (7) is an easy consequence of the next theorem. O

Remark. As we saw above,
n
<1 + Zﬂ) < ePla
n

for all n € N.

Theorem 7. Suppose that b, > 0 for each n € N and that lim, . nb, = 0. Then
(a) lim (1+40b,)" =1, and
n—o00

: _ no_
(b) 7}Ln;o(1 by)" = 1.

In addition, suppose that lim, o a, = 0 and that lim, (1 + a;)™ is finite. Then
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(c)

(I+an +b,)" = lim (1 +a,)"
n—oo

lim
n—oo

Proof. Let 1 > > 0. Then there is an N € N such that n > N implies nb,, = |nb,| < £/2. Using the
Binomial Theorem we see that

n n
1§(1+bn)”:1+<l)bn+<2>bﬁ+-~+bz

(n—1)

n
=1+nby + = A
=1+
Hence n > N implies
ne n(n—1) &2 1 en
1+b0)" <14+ —c+—F5—" 5+ +——
(14 n) o w2 nn 2n
<Adod ot —
2 22 2n
ng
=1+¢ Z %
j=1
<l+e¢
In other words, for all n > N
[(1+b)" 1] <e
and part (a) is established.
To prove (b), let ¢, = by /(1 — by). Then by the limit laws
nby, limy, 00 nby, 0

lim nc, = lim = =
n=oo ' n=oo 1l — by 1 —limy—s00 by 1-0

Now by (a) we have

1 n
b
tm b0 = i ()

1-b

b n
1. n n
v (1 =3, 11 —bn)

(I4+c)" =1

lim
n—00

Once again, by the limit laws

lim (1= by)" = ( lim (1— bn)*")fl =1

n—00 n—00
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To prove part (c¢), notice that 1+ a, # 0 for n sufficiently large and hence

. bn . nby
lim n = lim
n—oo 14 ap n—oo 1 4 ay,

So by part (a) and the limit laws

lim (1 + a, + bn)n =
n—00

by n
1 "1
(1+an) ( + i+ Um)

lim
n—ro0

) . b \"
=gt i, (1 tir )

= lim (1 +a,)"
n—oo

_ (/9)? ) _
Now to prove (7), let b, = T Then lim,,_, nb, = 0 and hence,

an(p/q)
an(p/q)

Jim a(=p/q) = lim an(=p/q)

|
5
—
|
—
IS
~
=)
=2

n? )" an(;)/ q)

= 1 — n i _
= (=) o o
1
~ epla

Here we have applied Theorem 7, the limit laws, and (6).

Theorem 8. The exponential function
" T\
® o)~ i (1)
is a well-defined real number for each = € R. Moreover, for z,y € R we have
(a) exp(z) > 0. In particular, z > 0 implies exp(z) > 1.
(b) exp(e) exp(—z) = 1
(c) exp(a)exp(y) = exp(e + 1)
(d) = <y implies exp(z) < exp(y)

Note: We have already proven (8) for x € Q.

Proof. Now let > 0. Then by the Archimedean Property, there exists an N € N such that N > z. Now
for each n € N

n

. N
an(z) =3 (1 + i)n < <1 + —) <eV <o
n n
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Now by Lemma 5 a,(z) is an increasing sequence. Hence, by the Monotone Convergence Theorem,
r\"

lim (1 + i) = exp(z) < eV

n—o00 n
Also, for all n € N

n
9) LenZ<(142)
n n
by Bernoulli’s Inequality. Thus
xr\"n
1<1l+az< lim (1+ 7) = exp(z)
n—00 n

since x is positive. Now by Theorem 7
exp(—z) = lim

|
=
]

|
S
bE
HA/:\/—\
|
S|r
ol %o
~
3
—
—
e
38
=

This establishes (8) and parts (a) and (b). To prove (c), let z,y € R. Then lim,_, n(xy/n?) = 0 and by
Theorem 7(c) we have

tim (1+2)" im (1+2)"
exp(«b)expw)—nggc( +;) ,Lﬂ‘éo( +;)

e 9 ra n
= lim (1+ Tty + ﬂ)

n—0o0 n TL2
n
= lim <1 + T—“’)
n—00 n
=exp(z +y)

To prove (d), let < y. Then y — 2 > 0 and by parts (c) and (a)

exp(y) — exp(z) = exp(z)(exp(y —z) —1) >0

O
Motivated by this (and the results from Lemma 6), we make the following definition.
Definition. Let x € R and let e represent Euler’s constant. We define e” by
(10) e’ = exp(x)
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Properties of the Exponential Function

We first catalogue a few important inequalities.
Lemma 9.

(a) 1+z <e” forall ze€R, and

1
(b) e’Sl— for z < 1.
-z

Proof. We have equality in both when z = 0.

The inequality in part (a) is obvious if < —1 since the left-hand side is nonpositive. If 2 > —1 then
by (2)

(1+£)"21+n£:1+1
n n
for all n € N. Thus

T . TN\"
e’ = lim (1+—) >14x
n—00 n

To prove part (b), suppose that 2 < 1. Then 1 —z > 0 and by part (a)
e ">1—-2>0

Rearranging, we obtain (b). O

The following theorem is an immediate consequence of Lemma 9.

Theorem 10.

(a) lime® =1
z—0

T
¥ —1
(b) lim &

z—=0 T

=1

(¢) lim e® =00 and lim €” =0.
T—00 T—>—00

Remark. Since €” = 1, the limit in (a) says that the exponential function is continuous at the origin.

Proof. To prove part (a), observe that for all x € (—1/2,1/2) we have

(11) 1+r<e" <

— T

by Lemma 9. Now let  — 0 and invoke the Squeeze Law.
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To prove (b), notice that (11) implies

1 f
r<e' —1< ——1= r
11—z 11—z

Dividing by positive z yields

r T 1l—-=x

On the other hand, if x < 0 then we obtain the reverse inequality

e’ —1 1
>
r T 1l—-=x

1>

Now let  — 0% and @ — 0~ respectively in the above inequalities. Part (b) now follows by the Squeeze
Law.

Part (c) is an immediate consequence of Lemma 9. For example, let M > 0. Then
exp(M) > M +1 > M. The proof of the second limit is nearly as trivial. O

The next 2 theorems make clear the importance of Theorem 10.

Theorem 11. The exponential function exp(z) is a continuous, strictly increasing function from R onto
(0, 00).

Proof. We have already seen that the exponential function is strictly increasing (see Theorem 8). Now let
x € R. Then by Theorem 10

lim ¢”t" = lim e®e" = ¢” lim e = ¢
h—0 h—0 h—0

In other words, the exponential function is continuous.

Finally, let L > 0. Then by Theorem 10(c), there exist real numbers a and b such that e® < L < €. So
by the Intermediate Value Theorem there is a ¢ € (a, b) such that e = L. ]

Theorem 12. The exponential function exp(z) is differentiable. In fact,

de®

-

Proof. Let x € R. Once again, by Theorem 10 we have

de* erth e  eteh en e
= lim = lim =¢€” lim ="
dr  h—0 h—0 h—0
O
Now let € R. We are now able to define a” for arbitrary positive numbers a. Of course, 17 = 1.
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Definition. Now let a > 0, a # 1. By Theorem 11, there exists a real number ¢ such that e¢ = a. For
each z € R we define

(12) a® =¢* = lim (1 + E)n
n—00 n
Note: c is called the (natural) logarithm of a and is denoted ¢ = Ina.

Remark. Tt turns out that f(z) = a” is a differentiable function from R onto (0, 00), and if a = € then

Also, f is strictly increasing when a > 1. Otherwise, f is strictly decreasing.
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