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Series Tests for Convergence - Summary

Recall

Definition. Given the infinite series

(1)
∞
∑

n=1

an = a1 + a2 + a3 + · · · + an + · · ·

we define the following. The number an is called the nth term of the
series. It is also called the summand . The nth partial sum of the
series is denoted by sn and is defined by

sn = a1 + a2 + a3 + · · · + an =
n

∑

k=1

ak

Notice that the partial sums generate a new sequence, the so-called
sequence of partial sums , {sn}. Now if this new sequence converges
to a limit, say L ∈ R, we say that the series (1) converges and that its
sum is L. Specifically,

sn → L as n → ∞ =⇒
∞
∑

n=1

an = L(2)

In other words,

∞
∑

n=1

an = lim
n→∞

n
∑

k=1

ak = lim
n→∞

sn(3)

whenever the limit exists. Otherwise, the series diverges .
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We have the following general test for convergence.

Theorem 1. Cauchy Criterion for Series. The series
∑∞

n=1
an

converges if and only if, for every ε > 0 there exists an N ∈ N such that
for all n > m ≥ N we have

|am+1 + am+2 + · · · an| =

∣

∣

∣

∣

∣

n
∑

j=m+1

aj

∣

∣

∣

∣

∣

< ε

Proof. Notice that

sn − sm =
n

∑

j=1

aj −
m
∑

j=1

aj = am+1 + am+2 + · · · an

Now apply the Cauchy Criterion for sequences to {sn}.

We summarize the various convergence tests for infinite series.
Suppose that an ≥ 0 for all n ≥ N, (N ∈ Z). To test the series

∑

an for
convergence (or divergence) we have the following.

1. n-Term Test (for Divergence).

If an 9 0 then
∑

n

an diverges.

Remark. This test is valid for any series, not just series with
nonnegative terms.

2. Cauchy Condensation Test. If {an} is a nonincreasing
sequence that converges to 0. Then

∑

n

an < ∞ iff
∑

n

2n a2n < ∞
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3. Comparison Test.

(a)
∑

an converges if there is a convergent series
∑

cn with
an ≤ cn for all n ≥ N for some positive integer N .

(b)
∑

an diverges if there is a divergent series
∑

dn with
an ≥ dn ≥ 0 for all n ≥ N for some positive integer N .

4. Limit Comparison Test . Let an > 0 and bn > 0 for all n ≥ N .

(a) Suppose that
an

bn

→ δ ∈ [0, ∞). If
∑

bn converges then so does
∑

an.

(b) Suppose that
an

bn

→ δ ∈ (0, ∞]. If
∑

bn diverges then so does
∑

an.

5. Ratio Test. Let
∑

an be a series of positive terms and suppose
that

lim
n→∞

an+1

an

= ρ.

Then

(a) the series converges if ρ < 1,

(b) the series diverges if ρ > 1 or ρ is infinite,

(c) the test is inconclusive if ρ = 1.

6. Root Test. Suppose that an ≥ 0 for n ≥ N and

lim
n→∞

n

√
an = ρ

Then

(a) the series converges if ρ < 1,

(b) the series diverges if ρ > 1 or ρ is infinite,

(c) the test is inconclusive if ρ = 1.
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7. Alternating Series Test (Leibnitz’s Theorem). Let N be a
positive integer. The alternating series

∞
∑

n=1

(−1)n+1an = a1 − a2 + a3 − a4 + · · ·

converges provided that the following three conditions are
satisfied.

(a) an > 0 for all n ≥ N .

(b) an ≥ an+1 for all n ≥ N .

(c) an → 0.

Example 1. Does the series below converge or diverge. Give reasons
for your answer.

∞
∑

n=2

1

1 + (ln n)3

We claim that the series diverges by the Cauchy Condensation Test.
Let

an =
1

1 + (ln n)3

Notice that an → 0 and, since the denominator is increasing, we clearly
have an ≥ an+1 so that the CCT applies. So the series

∑

an and the
series

∑

2n a2n converge or diverge together. Now
∞
∑

n=2

2n a2n =
∞
∑

n=2

2n

1 + (ln 2n)3
=

∞
∑

n=2

2n

1 + (ln 2)3 n3

but

lim
n→∞

2n

1 + (ln 2)3 n3
= ∞

So the series
∑

2n a2n diverges by the nth-term test. The result follows.
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Example 2. Do the following series converge or diverge. Justify your
claim.

a.
∞
∑

n=1

1√
n3 + 9

b.
∞
∑

n=1

n + 1

n2n

c.
∞
∑

n=1

1

3n−1 + 2

d.
∞
∑

n=1

(ln n)2

n3

e.
∞
∑

n=1

2n

(2n)!

f.
∞
∑

n=1

(−1)n+1(n!)2

(2n)!
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Example 3. Do the following series converge or diverge. Justify your
claim.

a.
∞
∑

n=1

n e−n2

b.
∞
∑

n=1

√
n

n2 + 2

c.
∞
∑

n=1

(

n

n + 1

)n

d.
∞
∑

n=1

cos(1/n)

n2

e.
∞
∑

n=1

3n n!

(2n)!

f.
∞
∑

n=1

(1 − cos (1/n))


