### 16.7 Surface Integrals

Let $f$ be a function defined on a region of $\mathbb{R}^{3}$ that contains the surface $S$. In this section we will define the surface integral of $f$ over $S$.

Definition. Suppose that the surface $S$ has the vector equation

$$
\begin{equation*}
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}, \quad(u, v) \in D \tag{1}
\end{equation*}
$$

Now if the components of $\mathbf{r}_{u}$ and $\mathbf{r}_{v}$ are continuous and $\mathbf{r}_{u}$ and $\mathbf{r}_{v}$ are nonzero and nonparallel in the interior of $D$, then we define the surface integral of $f$ over the surface $S$ by

$$
\begin{equation*}
\iint_{S} f(x, y, z) d S=\iint_{D} f(\mathbf{r}(u, v))\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A \tag{2}
\end{equation*}
$$

Remark. Compare with the definition of a line integral from section 16.2.

$$
\begin{equation*}
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t \tag{3}
\end{equation*}
$$

Here $\mathbf{r}(t)$ is a smooth parametrization of the space curve $C$.

Example 1. Let $b>0$ and let $S$ be the cone with vector equation

$$
\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+u \mathbf{k}, \quad 0 \leq u \leq b, 0 \leq v \leq 2 \pi
$$

Evaluate the surface integral $\iint_{S} x^{2} z d S$.
Now

$$
\mathbf{r}_{u}=\cos v \mathbf{i}+\sin v \mathbf{j}+\mathbf{k}, \quad \mathbf{r}_{v}=-u \sin v \mathbf{i}+u \cos v \mathbf{j}
$$

So that

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}=-u \cos v \mathbf{i}+u \sin v \mathbf{j}+u \mathbf{k}
$$

and

$$
\begin{aligned}
\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| & =\sqrt{u^{2} \cos ^{2} v+u^{2} \sin ^{2} v+u^{2}} \\
& =\sqrt{2} u
\end{aligned}
$$

since $u \geq 0$. Thus
(4)

$$
\begin{aligned}
\iint_{S} x^{2} z d S & =\sqrt{2} \iint_{D}\left(u^{2} \cos ^{2} v\right) u \cdot u d A \\
& =\sqrt{2} \int_{0}^{b} u^{4} d u \int_{0}^{2 \pi} \cos ^{2} v d v \\
& =\frac{\sqrt{2} b^{5}}{5} \int_{0}^{\pi} \frac{1+\cos 2 v}{2} d v \\
& =\left.\frac{b^{5}}{5 \sqrt{2}}\left(v+\frac{\sin 2 v}{2}\right)\right|_{0} ^{2 \pi} \\
& =\frac{\pi \sqrt{2} b^{5}}{5}
\end{aligned}
$$

Let's rework the previous example with the parametrization (of $S$ ) given by the vector equation

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+\sqrt{x^{2}+y^{2}} \mathbf{k}, \quad x^{2}+y^{2} \leq b^{2}
$$

Then

$$
\mathbf{r}_{x}=\mathbf{i}+\frac{x}{\sqrt{x^{2}+y^{2}}} \mathbf{k}, \quad \mathbf{r}_{y}=\mathbf{j}+\frac{y}{\sqrt{x^{2}+y^{2}}} \mathbf{k}
$$

Thus

$$
\mathbf{r}_{x} \times \mathbf{r}_{y}=\frac{-x}{\sqrt{x^{2}+y^{2}}} \mathbf{i}+\frac{-y}{\sqrt{x^{2}+y^{2}}} \mathbf{j}+\mathbf{k}
$$

and

$$
\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right|=\sqrt{2}
$$

Now

$$
\iint_{S} x^{2} z d S=\sqrt{2} \iint_{D} x^{2} \sqrt{x^{2}+y^{2}} d A
$$

Switching to polar coordinates we obtain

$$
=\sqrt{2} \int_{0}^{2 \pi} \int_{0}^{b}\left(r^{2} \cos ^{2} \theta\right) r \cdot r d r d \theta
$$

which is (4).

## Orientation

We call a smooth surface $S$ orientable or two-sided if it is possible to define a field n of unit normal vectors on $S$ that varies continuously with position.

Smooth surfaces that enclose solids are orientable and by convention, n is chosen to point outward. At each point on an orientable surface the vector $\mathbf{n}$ indicates the positive direction.

## Example 2. Nonorientable Surface

The Mobius Strip is an example if a nonorientable (or one-sided) surface.


Now let $S$ be a two-sided surface with vector equation

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}, \quad(u, v) \in D
$$

Now suppose that $S$ has a tangent plane at every point (except possibly at a boundary point). Then it is not difficult to show that

$$
\mathbf{n}_{1}=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}
$$

and $\mathbf{n}_{2}=-\mathbf{n}_{1}$ are unit vectors normal to the surface $S$.
If $S$ encloses a solid region $E$, it is conventional that the positive orientation is one for which the unit normal vectors point away from $E$.


Figure 1: Fluid flow across surface $S$.

## Surface Integrals for Vector Fields

Let $D$ be a region in space bounded by a closed surface $S$. Let $\mathbf{v}(x, y, z)$ be the velocity field of a fluid flowing smoothly through $D$ and $\delta=\delta(t, x, y, z)$ be the density of the fluid at $(x, y, z)$ at time $t$. Consider the vector field $\mathbf{F}=\delta \mathbf{v}$ and suppose all functions in question have continuous first partial derivatives.

Now consider a small patch $\Delta S$ on the surface $S$ (See Figure 1). If $\Delta t$ is small, then the volume $\Delta V$ of fluid that crosses the patch is approximately equal to the volume of a the cylinder with base area $\Delta S$ times the height $h=(\Delta t \mathbf{v}) \cdot \mathbf{n}$.

We have

$$
\Delta V \approx \mathbf{v} \cdot \mathbf{n} \Delta S \Delta t
$$

So the mass of this volume of fluid is

$$
\Delta m \approx \delta \mathbf{v} \cdot \mathbf{n} \Delta S \Delta t=\mathbf{F} \cdot \mathbf{n} \Delta S \Delta t
$$

It follows that the rate at which mass is leaving the region $D$ across the patch $\Delta S$ is roughly

$$
\frac{\Delta m}{\Delta t} \approx \mathbf{F} \cdot \mathbf{n} \Delta S
$$

Summing over $S$ yields

$$
\begin{equation*}
\frac{\sum \Delta m}{\Delta t} \approx \sum \mathbf{F} \cdot \mathbf{n} \Delta S \tag{5}
\end{equation*}
$$

So the right-hand side of this last equation gives an estimate of the average rate at which mass flows across $S$.

Notice that the right-hand side of (5) is a Riemann sum. So if $S$ and $\mathbf{F}$ are nice enough, $\Delta t \rightarrow 0$ and $\Delta S \rightarrow 0$ produces

$$
\frac{d m}{d t}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

This leads to the following definition.
Definition. The Surface Integral of F over $S$
If $\mathbf{F}$ is a continuous vector filed defined on an oriented surface $S$ with unit normal vector $\mathbf{n}$, then the surface integral of $\mathbf{F}$ over $S$ is
(6)

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

This integral is also called the flux of $\mathbf{F}$ across $S$.

If $S$ is defined by a vector function $\mathbf{r}(u, v)$ over some domain $D$, then

$$
\mathbf{n}=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|} \quad \text { or } \quad \mathbf{n}=-\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}
$$

Here we choose the quantity that gives us the preferred direction.
It follows that

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{S} \mathbf{F} \cdot \mathbf{n} d S \\
& =\iint_{S} \mathbf{F} \cdot \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|} d S \\
& =\iint_{D}\left[\mathbf{F}(\mathbf{r}(u, v)) \cdot \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}\right]\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A
\end{aligned}
$$

(7)

$$
=\iint_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A
$$

## Example 3.

Find the flux of the field $\mathbf{F}=y \mathbf{i}+x \mathbf{j}$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant in the direction away from the origin.


Let $g(x, y, z)=x^{2}+y^{2}+z^{2}$. Then the given surface, call it $S$, is just the level surface $g=a^{2}$. Observe that $S$ can defined by the vector equation

$$
\mathbf{r}(\phi, \theta)=a \sin \phi \cos \theta \mathbf{i}+a \sin \phi \sin \theta \mathbf{j}+a \cos \phi \mathbf{k},(\phi, \theta) \in D
$$

and

$$
\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}=a^{2} \sin ^{2} \phi \cos \theta \mathbf{i}+a^{2} \sin ^{2} \phi \sin \theta \mathbf{j}+a^{2} \sin \phi \cos \phi \mathbf{k}
$$

Here $D=\{(\phi, \theta): 0 \leq \phi \leq \pi / 2,0 \leq \theta \leq \pi / 2\}$. (See examples 4 and 10 from section 16.6 in the text.)

It follows that,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S}= & \iint_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d A \\
= & \iint_{D}(a \sin \phi \sin \theta \mathbf{i}+a \sin \phi \cos \theta \mathbf{j}) \cdot \\
& \left(a^{2} \sin ^{2} \phi \cos \theta \mathbf{i}+a^{2} \sin ^{2} \phi \sin \theta \mathbf{j}+a^{2} \sin \phi \cos \phi \mathbf{k}\right) d A \\
= & a^{3} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2}\left(\sin ^{3} \phi \sin \theta \cos \theta+\sin ^{3} \phi \sin \theta \cos \theta\right) d \phi d \theta \\
= & a^{3} \int_{0}^{\pi / 2} \sin ^{3} \phi d \phi \int_{0}^{\pi / 2} 2 \sin \theta \cos \theta d \theta \\
= & \vdots \\
= & \frac{2 a^{3}}{3}
\end{aligned}
$$

Redo the last example by observing that $S$ can also be defined by the vector equation

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+\sqrt{a^{2}-x^{2}-y^{2}} \mathbf{k}, \quad(x, y) \in D
$$

where $D=\left\{(x, y): x^{2}+y^{2} \leq a^{2}, x \geq 0, y \geq 0\right\}$.

## Example 4.

Find the flux of the field $\mathbf{F}=z^{2} \mathbf{i}+x \mathbf{j}-3 z \mathbf{k}$ outward through the surface cut from the parabolic cylinder $z=4-y^{2}$ by the planes $x=0, x=1$, and $z=0$.


Let $S$ be the given parabolic cylinder and
$D=\{(x, y): 0 \leq x \leq 1,-2 \leq y \leq 2\}$. Then $S$ can be defined by the vector equation

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+\left(4-y^{2}\right) \mathbf{k}, \quad(x, y) \in D
$$

Proceeding as usual we have

$$
\mathbf{r}_{x}=\mathbf{i} \quad \text { and } \quad \mathbf{r}_{y}=\mathbf{j}-2 y \mathbf{k}
$$

So that

$$
\mathbf{r}_{x} \times \mathbf{r}_{y}=2 y \mathbf{j}+\mathbf{k}
$$

## Following (7) we obtain

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S & =\iint_{D} \mathbf{F}(\mathbf{r}(x, y)) \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right) d A \\
& =\iint_{D}\left(z^{2} \mathbf{i}+x \mathbf{j}-3\left(4-y^{2}\right) \mathbf{k}\right) \cdot(2 y \mathbf{j}+\mathbf{k}) d A \\
& =\int_{-2}^{2} \int_{0}^{1}\left(3 y^{2}+2 x y-12\right) d x d y \\
& =\vdots \\
& =-32
\end{aligned}
$$

## Example 5.

Let $S$ be the portion of the cylinder $y=e^{x}$ in the first octant, with $0 \leq x \leq 1$ and $0 \leq z \leq 1$. And let $\mathbf{n}$ be the unit vector normal to $S$ that points away from the $y z$-plane. Find the flux of the field $\mathbf{F}=-2 \mathbf{i}+2 y \mathbf{j}+z \mathbf{k}$ across $S$ in the direction of $\mathbf{n}$.


Let $D=\{(x, z): 0 \leq x \leq 1,0 \leq z \leq 1\}$. Then $S$ can be defined by the vector equation

$$
\mathbf{r}(x, z)=x \mathbf{i}+e^{x} \mathbf{j}+z \mathbf{k}, \quad(x, z) \in D
$$

Proceeding as before we have

$$
\mathbf{r}_{x}=\mathbf{i}+e^{x} \mathbf{j} \quad \text { and } \quad \mathbf{r}_{z}=\mathbf{k}
$$

So that

$$
\mathbf{r}_{x} \times \mathbf{r}_{z}=e^{x} \mathbf{i}-\mathbf{j}
$$

From (7) we have

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S & =\iint_{D} \mathbf{F}(\mathbf{r}(x, z)) \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{z}\right) d A \\
& =\iint_{D}\left(-2 \mathbf{i}+2 e^{x} \mathbf{j}+z \mathbf{k}\right) \cdot\left(e^{x} \mathbf{i}-\mathbf{j}\right) d A \\
& =-4 \int_{0}^{1} \int_{0}^{1} e^{x} d x d z \\
& =-4 \int_{0}^{1} e^{x} d x \\
& =4(1-e)
\end{aligned}
$$

The given surface can also be parameterized by the vector equation

$$
\begin{equation*}
\mathbf{r}_{1}(y, z)=\ln y \mathbf{i}+y \mathbf{j}+z \mathbf{k}, \quad(y, z) \in D_{1} \tag{8}
\end{equation*}
$$

Exercise - Set up and evaluate an equivalent integral for Example 5 using the vector equation (8). Of course, you will need to find $D_{1}$.

Example 6. Let $b>0$. Find the outward flux of the field

$$
\mathbf{F}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\rho^{3}}, \quad \rho=\sqrt{x^{2}+y^{2}+z^{2}}
$$

across the surface of the sphere $S: x^{2}+y^{2}+z^{2}=\rho^{2}=b^{2}$.
Notice that the outward normal is

$$
\mathbf{n}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{b}
$$

and

$$
\mathbf{F} \cdot \mathbf{n}=\frac{x^{2}+y^{2}+z^{2}}{b^{4}}=\frac{1}{b^{2}}
$$

It follows that the flux across the outer surface $S$ is

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S & =\iint_{S} \frac{1}{h^{2}} d S=\frac{1}{b^{2}} \iint_{S} d S \\
& =\frac{1}{b^{2}} \times \text { surface area of } S \\
& =\frac{1}{b^{2}} 4 \pi b^{2}=4 \pi
\end{aligned}
$$

So the outward flux across a sphere of any radius for this vector field is $4 \pi$. We will have more to say about this example in section 16.9.

