16.4 Green's Theorem (cont)

Divergence

Definition. Divergence (Flux Density)

If $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is a vector field in \mathbb{R}^{3} and if the partial derivatives of M, N, and P exist, then the divergence of \mathbf{F} is the scalar

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\nabla \cdot \mathbf{F} \\
& =\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}
\end{aligned}
$$

Notice that the divergence is real-valued.

Example 1.

Find the divergence of $\mathbf{F}=x^{2} y \mathbf{i}+2 x y \mathbf{j}+z^{3} \mathbf{k}$.

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\nabla \cdot \mathbf{F} \\
& =\frac{\partial\left(x^{2} y\right)}{\partial x}+\frac{\partial(2 x y)}{\partial y}+\frac{\partial\left(z^{3}\right)}{\partial z} \\
& =2 x y+2 x+3 z^{2}
\end{aligned}
$$

Now suppose that \mathbf{F} is a velocity field of a fluid flow. Then, for example,

$$
\operatorname{div} \mathbf{F}(1,2,1)=2(1)(2)+2(1)+3(1)^{2}=9
$$

implies that fluid is being piped away from the point $(1,2,1)$.

Flux Across a Plane Curve

Definition. If C is a smooth closed curve in the domain of a continuous vector field $\mathbf{F}=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ in the plane and if \mathbf{n} is the outward-pointing normal vector on C, then the flux of \mathbf{F} across C is

$$
\text { Flux }=\oint_{C} \mathbf{F} \cdot \mathbf{n} d s
$$

Notice that the flux of \mathbf{F} across C is the line integral of the scalar component of \mathbf{F} in the direction of outward normal.

Now suppose that C is parameterized by

$$
x=x(t), \quad y=y(t), \quad a \leq t \leq b
$$

traces the curve in the counterclockwise direction exactly once.

Figure 1: Relationship between $\mathbf{T}, \mathbf{n}, \mathbf{k}$

In chapter 13 we saw that the unit tangent vector, \mathbf{T} was given by

$$
\mathbf{T}=\frac{d \mathbf{r}}{d s}=\frac{d x}{d s} \mathbf{i}+\frac{d y}{d s} \mathbf{j}
$$

Notice that $\mathbf{n}=\mathbf{T} \times \mathbf{k}$. See Figure 1. Thus

$$
\begin{aligned}
\mathbf{n} & =\mathbf{T} \times \mathbf{k} \\
& =\left(\frac{d x}{d s} \mathbf{i}+\frac{d y}{d s} \mathbf{j}\right) \times \mathbf{k} \\
& =\frac{d x}{d s}(-\mathbf{j})+\frac{d y}{d s} \mathbf{i}
\end{aligned}
$$

or

$$
=\frac{d y}{d s} \mathbf{i}-\frac{d x}{d s} \mathbf{j}
$$

If

$$
\mathbf{F}=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}
$$

then

$$
\mathbf{F} \cdot \mathbf{n}=M(x, y) \frac{d y}{d s}-N(x, y) \frac{d x}{d s}
$$

It follows that
(1)

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s & =\oint_{C}\left(M \frac{d y}{d s}-N \frac{d x}{d s}\right) d s \\
& =\oint_{C} M d y-N d x
\end{aligned}
$$

Example 2. Computing Flux

Let $\mathbf{F}=2 x \mathbf{i}+(y-x) \mathbf{j}$. Find the outward flux of the field \mathbf{F} across the circle.

$$
C: \mathbf{r}(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}, \quad 0 \leq t \leq 2 \pi
$$

$$
\begin{aligned}
x & =a \cos t, \quad d x=-a \sin t d t \\
y & =a \sin t, \quad d y=a \cos t d t \\
M & =2 x=2 a \cos t \\
N & =y-x=a \sin t-a \cos t
\end{aligned}
$$

Thus

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s & =\oint_{C} M d y-N d x \\
& =\int_{0}^{2 \pi} 2 a \cos t a \cos t d t+(a \sin t-a \cos t) a \sin t d t \\
& =a^{2} \int_{0}^{2 \pi}\left(2 \cos ^{2} t+\sin ^{2} t-\sin t \cos t\right) d t \\
& =a^{2} \int_{0}^{2 \pi}\left(1+\cos ^{2} t-\sin t \cos t\right) d t \\
& =a^{2} \int_{0}^{2 \pi}\left(1-\sin t \cos t+\frac{1}{2}(1+\cos 2 t)\right) d t \\
& =a^{2} \int_{0}^{2 \pi}\left(\frac{3}{2}-\sin t \cos t+\frac{\cos 2 t}{2}\right) d t \\
& =\left.a^{2}\left(\frac{3 t}{2}-\frac{\sin ^{2} t}{2}+\frac{\sin 2 t}{4}\right)\right|_{0} ^{2 \pi}=3 a^{2} \pi
\end{aligned}
$$

Theorem 1. Green's Theorem (Normal Form)

The outward flux of a field $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$ across a simple closed curve C is equal to the double integral of the flux density over the region R enclosed by C. Suppose also that M and N have continuous partial derivatives on an open region that contains R.

$$
\begin{align*}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s & =\oint_{C} M d y-N d x \tag{2}\\
& =\iint_{R} \underbrace{\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right)}_{\text {divergence (flux density) }} d x d y \tag{3}
\end{align*}
$$

or, more conveniently,

$$
=\iint_{R} \underbrace{\nabla \cdot \mathbf{F}}_{\text {divergence }} d x d y
$$

Proof. This one is easy. By the tangential form of Green's Theorem, we have

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s & =\oint_{C} M d y-N d x \\
& =\oint_{C}-N d x+M d y \\
& =\iint_{R}\left(\frac{\partial M}{\partial x}-\frac{\partial(-N)}{\partial y}\right) d x d y \\
& =\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y
\end{aligned}
$$

Example 3. Consider the velocity vector field below.

$$
\mathbf{F}=5 y \mathbf{j}
$$

over the unit square R as shown in Figure 2. Once again, we imagine the field represents a thin fluid flowing over the $x y$-plane and the units of \mathbf{F} are expressed in $\mathrm{ft} / \mathrm{sec}$.

Figure 2: Velocity Field $5 y$ j
What can you say about the flux density (see Figure 2) at each point within the region R ?

Now find the outward flux for the velocity field \mathbf{F} across the region R in two different ways.

We first proceed directly, that is, we evaluate the line integral $\int_{\partial R} \mathbf{F} \cdot \mathbf{n} d s$.

$$
\oint_{\partial R} \mathbf{F} \cdot \mathbf{n} d s=\int_{C_{1}}+\int_{C_{2}}+\int_{C_{3}}+\int_{C_{4}} \mathbf{F} \cdot \mathbf{n} d s
$$

It is pretty easy to see that the flux across each of the line segments C_{1}, C_{3}, C_{4} is zero. Why? And we leave it as an easy exercise to show that

$$
\oint_{\partial R} \mathbf{F} \cdot \mathbf{n} d s=\int_{C_{2}} \mathbf{F} \cdot \mathbf{n} d s=5
$$

Now calculate the flux using (the normal form) of Green's Theorem. We have

$$
\begin{aligned}
\oint_{\partial R} \mathbf{F} \cdot \mathbf{n} d s & =\iint_{R}\left(\frac{\partial(0)}{\partial x}+\frac{\partial(5 y)}{\partial y}\right) d x d y \\
& =5 \iint_{R} d x d y \\
& =5 \times \text { area of } R \\
& =5
\end{aligned}
$$

Is there a physical interpretation of this result?
After examining the units, we see that flux is $5 \mathrm{ft}^{2} / \mathrm{sec}$. Let's make a further assumption that the thin fluid is water with a depth of $1 / 2$ inch.
In that case, the flux calculation tells us that water is being piped out of (or away from) the region R at a rate of $5 / 24$ cubic ft per second or approximately 1.67 gallons per minute.

We will be able to make this example a bit more concrete after we discuss the 3-dimensional analogs of Green's Theorem after the break.

Figure 3: The field $\mathbf{G}=2 x \mathbf{i}+(-3 y) \mathbf{j}$
Example 4. Let $\mathbf{G}=2 x \mathbf{i}+(-3 y) \mathbf{j}$ and evaluate the flux integral $\int_{C} \mathbf{G} \cdot \mathbf{n} d s$. By the normal form of Green's Theorem we have

$$
\begin{aligned}
\oint_{C} 2 x d y-(-3 y) d x & =\oint_{C} M d y-N d x \\
& =\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y \\
& =\int_{0}^{\pi} \int_{0}^{\sin x}(2-3) d y d x \\
& =-\int_{0}^{\pi} \sin x d x \\
& =\left.\cos x\right|_{0} ^{\pi}=-2
\end{aligned}
$$

Once again, here are both forms of Green's Theorem.

Let C be a piecewise-smooth, simple closed curve in the plane and let R be the region bounded by C (in the plane). Suppose also that M and N have continuous partial derivatives on an open region that contains R. Then

Green's Theorem (Tangential Form)

$$
\begin{align*}
\oint_{C} \mathbf{F} \cdot \mathbf{T} d s & =\oint_{C} M d x+N d y \tag{4}\\
& =\iint_{R} \underbrace{\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)}_{(\nabla \times \mathbf{F}) \cdot \mathbf{k}} d x d y \tag{5}
\end{align*}
$$

Green's Theorem (Normal Form)

$$
\begin{align*}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s & =\oint_{C} M d y-N d x \tag{6}\\
& =\iint_{R} \underbrace{\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right)}_{\nabla \cdot \mathbf{F}} d x d y \tag{7}
\end{align*}
$$

Figure 4: A Spin Field
It turns out that (both forms of) Green's Theorem apply for regions with holes. We illustrate with an example. For a proof, see the text.

Example 5. Let $\mathbf{F}=\frac{-y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j}$ and let C_{1} be any positively oriented, piecewise smooth, closed curve that contains the origin. We sketch an example curve in Figure 4.

We claim that

$$
\begin{equation*}
\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=2 \pi \tag{8}
\end{equation*}
$$

How do we know this without an explicit description of C_{1} ?
It is easy to see that \mathbf{F} is conservative over any region that does not contain the origin. Now let C_{2} be a circle centered at the origin of radius $a>0$ chosen so that C_{2} lies inside of C_{1} and let R be the region inside C_{1} but outside C_{2} (see Figure 5).

Figure 5: A region with a hole
Notice that we orient C_{2} so that R lies to our left we traverse the curve. It is easy to confirm that $\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=-2 \pi$ (see Example 11 from the previous lecture). Now let $C=C_{1} \cup C_{2}$. If the tangential form of Green's Theorem holds on R (it does), then we have

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y \\
& =0
\end{aligned}
$$

Thus

$$
\begin{aligned}
0 & =\oint_{C} \mathbf{F} \cdot d \mathbf{r} \\
& =\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}+\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r} \\
& =\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}-2 \pi
\end{aligned}
$$

and the result follows.

Example 6. Let T be the triangular region in the first quadrant bounded by the lines $2 x+y=1, x=0$, and $y=0$. Evaluate the integral below.

$$
\oint_{\partial T} y^{2} d x+x^{2} d y
$$

We appeal to (the tangential form of) Green's Theorem.

$$
\begin{aligned}
\oint_{\partial T} y^{2} d x+x^{2} d y & =\iint_{T}\left(\frac{\partial\left(x^{2}\right)}{\partial x}-\frac{\partial\left(y^{2}\right)}{\partial y}\right) d y d x \\
& =2 \int_{0}^{1 / 2} \int_{0}^{1-2 x} x-y d y d x \\
& =\int_{0}^{1 / 2} 6-8 x^{2}-1 d x \\
& =-1 / 12
\end{aligned}
$$

We leave it as an exercise to evaluate the line integral directly and also to rewrite the line integral as a flux integral and apply Green's
Theorem. Both calculations should yield the same result.

Example 7. Let $a>0$. Find the outward flux of the velocity field

$$
\mathbf{F}=\left(3 x y-\frac{x}{1+y^{2}}\right) \mathbf{i}+\left(e^{x}+\tan ^{-1} y\right) \mathbf{j}
$$

across the upper half of the cardioid region R defined by

$$
R: \quad r(\theta) \leq a(1+\cos \theta), \quad 0 \leq \theta \leq \pi
$$

Let $M=3 x y-\frac{x}{1+y^{2}}$ and $N=e^{x}+\tan ^{-1} y$. Then

$$
\begin{aligned}
\oint_{\partial R} \mathbf{F} \cdot \mathbf{n} d s & =\oint_{\partial R} M d y-N d x \\
& =\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y \\
& =\iint_{R} 3 y-\frac{1}{1+y^{2}}+\frac{1}{1+y^{2}} d x d y \\
& =\int_{0}^{\pi} \int_{0}^{a(1+\cos \theta)} 3 r^{2} \sin \theta d r d \theta \\
& =a^{3} \int_{0}^{\pi} \sin \theta(1+\cos \theta)^{3} d \theta \\
& =\left.\frac{-a^{3}}{4}(1+\cos \theta)^{4}\right|_{0} ^{\pi} \\
& =4 a^{3}
\end{aligned}
$$

Figure 6: Folium of Descartes (with $a=1$)
Example 8. Let $a>0$. In or around 1638, Rene Descartes challenged Pierre de Fermat to find the tangent line at any point along the curve whose parametric equations were given by

$$
\begin{equation*}
x=\frac{3 a t}{1+t^{3}} \quad \text { and } \quad y=\frac{3 a t^{2}}{1+t^{3}} \tag{9}
\end{equation*}
$$

It is easy to show that the curve can be expressed in rectangular coordinates as

$$
x^{3}+y^{3}=3 a x y
$$

and it has a slant asymptote $x+y=-a$. These days the problem is often found in a textbook covering first semester calculus, but in 1638 calculus had not yet been discovered.

Use the methods of Example 8 in the previous section to find the area inside the loop C (which happens to lie in quadrant 1). Hint: The parametric equations trace out one half of the loop for $0 \leq t \leq 1$.

Referring to (9), notice that $y / x=t$. Now the quotient rule yields

$$
d t=\frac{x d y-y d x}{x^{2}}
$$

or

$$
x^{2} d t=x d y-y d x
$$

It follows by (6) (from 16.4p1) that

$$
\begin{aligned}
\text { area } & =\frac{1}{2} \oint_{C} x d y-y d x \\
& =\frac{1}{2} \oint_{C} x^{2} d t \\
& =\frac{1}{2} \int_{0}^{\infty}\left(\frac{3 a t}{1+t^{3}}\right)^{2} d t
\end{aligned}
$$

Following the hint, the last line reduces to

$$
\begin{aligned}
& =2 \times \frac{1}{2} \int_{0}^{1}\left(\frac{3 a t}{1+t^{3}}\right)^{2} d t \\
& =3 a^{2} \int_{0}^{1} \frac{3 t^{2}}{\left(1+t^{3}\right)^{2}} d t \\
& =3 a^{2} \int_{1}^{2} \frac{d u}{u^{2}} \\
& =\frac{3 a^{2}}{2}
\end{aligned}
$$

