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16.4 Green’s Theorem (cont)

Divergence

Definition. Divergence (Flux Density)

If F = M i +N j + P k is a vector field in R
3 and if the partial derivatives

of M , N , and P exist, then the divergence of F is the scalar

divF = ∇ · F

=
∂M

∂x
+

∂N

∂y
+

∂P

∂z

Notice that the divergence is real-valued.

Example 1.

Find the divergence of F = x2y i + 2xy j + z3 k.

divF = ∇ · F

=
∂
(
x2y

)

∂x
+

∂ (2xy)

∂y
+

∂
(
z3
)

∂z

= 2xy + 2x + 3z2

Now suppose that F is a velocity field of a fluid flow. Then, for example,

divF(1, 2, 1) = 2(1)(2) + 2(1) + 3(1)2 = 9

implies that fluid is being piped away from the point (1, 2, 1).
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Flux Across a Plane Curve

Definition. If C is a smooth closed curve in the domain of a

continuous vector field F = M(x, y) i +N(x, y) j in the plane and if n is

the outward-pointing normal vector on C, then the flux of F across C is

Flux =

ffi

C

F · n ds

Notice that the flux of F across C is the line integral of the scalar

component of F in the direction of outward normal.

Now suppose that C is parameterized by

x = x(t), y = y(t), a ≤ t ≤ b

traces the curve in the counterclockwise direction exactly once.
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Figure 1: Relationship between T,n, k

In chapter 13 we saw that the unit tangent vector, T was given by

T =
dr

ds
=

dx

ds
i +

dy

ds
j

Notice that n = T× k. See Figure 1. Thus

n = T× k

=

(
dx

ds
i +

dy

ds
j

)

× k

=
dx

ds
(−j) +

dy

ds
i

or

=
dy

ds
i−

dx

ds
j
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If

F = M(x, y) i +N(x, y) j,

then

F · n = M(x, y)
dy

ds
−N(x, y)

dx

ds

It follows that
ffi

C

F · n ds =

ffi

C

(

M
dy

ds
−N

dx

ds

)

ds

=

ffi

C

M dy −N dx(1)
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Example 2. Computing Flux

Let F = 2x i + (y − x) j. Find the outward flux of the field F across the

circle.

C : r(t) = a cos t i + a sin t j, 0 ≤ t ≤ 2π

−2 −1 1 2

−2

−1

1

2

C
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x = a cos t, dx = −a sin t dt

y = a sin t, dy = a cos t dt

M = 2x = 2a cos t

N = y − x = a sin t− a cos t

Thus
ffi

C

F · n ds =

ffi

C

M dy −N dx

=

ˆ 2π

0

2a cos t a cos t dt + (a sin t− a cos t) a sin t dt

= a2
ˆ 2π

0

(
2 cos2 t + sin2 t− sin t cos t

)
dt

= a2
ˆ 2π

0

(
1 + cos2 t− sin t cos t

)
dt

= a2
ˆ 2π

0

(

1− sin t cos t +
1

2
(1 + cos 2t)

)

dt

= a2
ˆ 2π

0

(
3

2
− sin t cos t +

cos 2t

2

)

dt

= a2
(
3t

2
−

sin2 t

2
+

sin 2t

4

) 2π

0

= 3a2π
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Theorem 1. Green’s Theorem (Normal Form)

The outward flux of a field F = M i +N j across a simple closed curve

C is equal to the double integral of the flux density over the region R

enclosed by C. Suppose also that M and N have continuous partial

derivatives on an open region that contains R.
ffi

C

F · n ds =

ffi

C

M dy −N dx(2)

=

¨

R

(
∂M

∂x
+

∂N

∂y

)

︸ ︷︷ ︸

divergence (flux density)

dx dy(3)

or, more conveniently,

=

¨

R

∇ · F
︸ ︷︷ ︸

divergence

dx dy

Proof. This one is easy. By the tangential form of Green’s Theorem, we

have
ffi

C

F · n ds =

ffi

C

M dy −N dx

=

ffi

C

−N dx +M dy

=

¨

R

(
∂M

∂x
−

∂(−N)

∂y

)

dx dy

=

¨

R

(
∂M

∂x
+

∂N

∂y

)

dx dy
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Example 3. Consider the velocity vector field below.

F = 5y j

over the unit square R as shown in Figure 2. Once again, we imagine

the field represents a thin fluid flowing over the xy-plane and the units

of F are expressed in ft/sec.

R
C1

C2

C3

C4

Figure 2: Velocity Field 5y j

What can you say about the flux density (see Figure 2) at each point

within the region R?

Now find the outward flux for the velocity field F across the region R in

two different ways.

We first proceed directly, that is, we evaluate the line integral
´

∂RF · n ds.
ffi

∂R

F · n ds =

ˆ

C1

+

ˆ

C2

+

ˆ

C3

+

ˆ

C4

F · n ds
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It is pretty easy to see that the flux across each of the line segments

C1, C3, C4 is zero. Why? And we leave it as an easy exercise to show

that
ffi

∂R

F · n ds =

ˆ

C2

F · n ds = 5

Now calculate the flux using (the normal form) of Green’s Theorem.

We have
ffi

∂R

F · n ds =

¨

R

(
∂(0)

∂x
+

∂(5y)

∂y

)

dx dy

= 5

¨

R

dx dy

= 5× area of R

= 5

Is there a physical interpretation of this result?

After examining the units, we see that flux is 5 ft2/sec. Let’s make a

further assumption that the thin fluid is water with a depth of 1/2 inch.

In that case, the flux calculation tells us that water is being piped out of

(or away from) the region R at a rate of 5/24 cubic ft per second or

approximately 1.67 gallons per minute.

We will be able to make this example a bit more concrete after we

discuss the 3-dimensional analogs of Green’s Theorem after the break.
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1 2 3

1

Figure 3: The field G = 2x i+ (−3y) j

Example 4. Let G = 2x i + (−3y) j and evaluate the flux integral
´

C G · n ds. By the normal form of Green’s Theorem we have
ffi

C

2x dy − (−3y) dx =

ffi

C

M dy −N dx

=

¨

R

(
∂M

∂x
+

∂N

∂y

)

dx dy

=

ˆ π

0

ˆ sin x

0

(2− 3) dy dx

= −

ˆ π

0

sinx dx

= cosx
π

0

= −2
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Once again, here are both forms of Green’s Theorem.

Let C be a piecewise-smooth, simple closed curve in the plane and let

R be the region bounded by C (in the plane). Suppose also that M and

N have continuous partial derivatives on an open region that contains

R. Then

Green’s Theorem (Tangential Form)
ffi

C

F ·T ds =

ffi

C

M dx +N dy(4)

=

¨

R

(
∂N

∂x
−

∂M

∂y

)

︸ ︷︷ ︸

(∇×F)·k

dx dy(5)

Green’s Theorem (Normal Form)
ffi

C

F · n ds =

ffi

C

M dy −N dx(6)

=

¨

R

(
∂M

∂x
+

∂N

∂y

)

︸ ︷︷ ︸

∇·F

dx dy(7)
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C1

Figure 4: A Spin Field

It turns out that (both forms of) Green’s Theorem apply for regions with

holes. We illustrate with an example. For a proof, see the text.

Example 5. Let F = −y
x2+y2

i + x
x2+y2

j and let C1 be any positively

oriented, piecewise smooth, closed curve that contains the origin. We

sketch an example curve in Figure 4.

We claim that

(8)

ffi

C1

F · dr = 2π

How do we know this without an explicit description of C1?

It is easy to see that F is conservative over any region that does not

contain the origin. Now let C2 be a circle centered at the origin of

radius a > 0 chosen so that C2 lies inside of C1 and let R be the region

inside C1 but outside C2 (see Figure 5).
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C1

C2

a

R

Figure 5: A region with a hole

Notice that we orient C2 so that R lies to our left we traverse the curve.

It is easy to confirm that
ff

C2
F · dr = −2π (see Example 11 from the

previous lecture). Now let C = C1 ∪C2. If the tangential form of Green’s

Theorem holds on R (it does), then we have
ffi

C

F · dr =

¨

R

(
∂N

∂x
−

∂M

∂y

)

dx dy

= 0

Thus

0 =

ffi

C

F · dr

=

ffi

C1

F · dr +

fi

C2

F · dr

=

ffi

C1

F · dr− 2π

and the result follows.
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Example 6. Let T be the triangular region in the first quadrant

bounded by the lines 2x + y = 1, x = 0, and y = 0. Evaluate the integral

below.
ffi

∂T

y2 dx + x2 dy

We appeal to (the tangential form of) Green’s Theorem.
ffi

∂T

y2 dx + x2 dy =

¨

T

(
∂(x2)

∂x
−

∂(y2)

∂y

)

dy dx

= 2

ˆ 1/2

0

ˆ 1−2x

0

x− y dy dx

=

ˆ 1/2

0

6− 8x2 − 1 dx

= −1/12

We leave it as an exercise to evaluate the line integral directly and also

to rewrite the line integral as a flux integral and apply Green’s

Theorem. Both calculations should yield the same result.
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Example 7. Let a > 0. Find the outward flux of the velocity field

F =

(

3xy −
x

1 + y2

)

i + (ex + tan−1 y) j

across the upper half of the cardioid region R defined by

R : r(θ) ≤ a(1 + cos θ), 0 ≤ θ ≤ π

Let M = 3xy −
x

1 + y2
and N = ex + tan−1 y. Then

ffi

∂R

F · n ds =

ffi

∂R

M dy −N dx

=

¨

R

(
∂M

∂x
+

∂N

∂y

)

dx dy

=

¨

R

3y −
1

1 + y2
+

1

1 + y2
dx dy

=

ˆ π

0

ˆ a(1+cos θ)

0

3r2 sin θ dr dθ

= a3
ˆ π

0

sin θ(1 + cos θ)3 dθ

=
−a3

4
(1 + cos θ)4

π

0

= 4a3
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x

y

Figure 6: Folium of Descartes (with a = 1)

Example 8. Let a > 0. In or around 1638, Rene Descartes challenged

Pierre de Fermat to find the tangent line at any point along the curve

whose parametric equations were given by

(9) x =
3at

1 + t3
and y =

3at2

1 + t3

It is easy to show that the curve can be expressed in rectangular

coordinates as

x3 + y3 = 3axy

and it has a slant asymptote x + y = −a. These days the problem is

often found in a textbook covering first semester calculus, but in 1638

calculus had not yet been discovered.

Use the methods of Example 8 in the previous section to find the area

inside the loop C (which happens to lie in quadrant 1). Hint: The

parametric equations trace out one half of the loop for 0 ≤ t ≤ 1.
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Referring to (9), notice that y/x = t. Now the quotient rule yields

dt =
x dy − y dx

x2

or

x2 dt = x dy − y dx

It follows by (6) (from 16.4p1) that

area =
1

2

ffi

C

x dy − y dx

=
1

2

ffi

C

x2 dt

=
1

2

ˆ ∞

0

(
3at

1 + t3

)2

dt

Following the hint, the last line reduces to

= 2×
1

2

ˆ 1

0

(
3at

1 + t3

)2

dt

= 3a2
ˆ 1

0

3t2

(1 + t3)2
dt

= 3a2
ˆ 2

1

du

u2

=
3a2

2


