16.0 Curl and Divergence

Definition. Circulation Density at a Point in the Plane

The circulation density of a vector field $\mathbf{F}(x, y)=M \mathbf{i}+N \mathbf{j}$ at a point (x, y) is

$$
\begin{equation*}
(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k}=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y} \tag{1}
\end{equation*}
$$

It turns out that this notion can be generalized in 3-space. We have the following

Definition. Curl (Circulation Density)

If $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is a vector field in \mathbb{R}^{3} and if the partial derivatives of M, N, and P exist, then the curl of \mathbf{F} is the vector field

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\nabla \times \mathbf{F} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & P
\end{array}\right| \\
& =\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) \mathbf{i}-\left(\frac{\partial P}{\partial x}-\frac{\partial M}{\partial z}\right) \mathbf{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}
\end{aligned}
$$

Notice that curl in space is a vector.

There is a related quantity.

Definition. Divergence (Flux Density)

If $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is a vector field in \mathbb{R}^{3} and if the partial derivatives of M, N, and P exist, then the divergence of \mathbf{F} is the scalar

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\nabla \cdot \mathbf{F} \\
& =\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}
\end{aligned}
$$

Notice that, unlike curl, the divergence of a vector field is real-valued. We describe a physical interpretation of divergence in the next example.

Example 1. Find the divergence and curl of the vector field $\mathbf{F}=x^{2} y \mathbf{i}+2 x y \mathbf{j}+z^{3} \mathbf{k}$.

$$
\begin{aligned}
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F} & =\frac{\partial\left(x^{2} y\right)}{\partial x}+\frac{\partial(2 x y)}{\partial y}+\frac{\partial\left(z^{3}\right)}{\partial z} \\
& =2 x y+2 x+3 z^{2}
\end{aligned}
$$

Now suppose that \mathbf{F} is a velocity field of a fluid flow. Then, for example,

$$
\operatorname{div} \mathbf{F}(1,2,1)=2(1)(2)+2(1)+3(1)^{2}=9
$$

implies that fluid is being piped away from the point $(1,2,1)$ since the result is positive. To compute the curl we have

$$
\begin{aligned}
& \nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} y & 2 x y & z^{3}
\end{array}\right| \\
&=\mathbf{i}\left(\frac{\partial\left(z^{3}\right)}{\partial y}-\frac{\partial(2 x y)}{\partial z}\right)-\mathbf{j}\left(\frac{\partial\left(z^{3}\right)}{\partial x}-\frac{\partial\left(x^{2} y\right)}{\partial z}\right) \\
& \quad+\mathbf{k}\left(\frac{\partial(2 x y)}{\partial x}-\frac{\partial\left(x^{2} y\right)}{\partial y}\right) \\
&=\mathbf{i}(0-0)-\mathbf{j}(0-0)+\mathbf{k}\left(2 y-x^{2}\right) \\
&=\left(2 y-x^{2}\right) \mathbf{k}
\end{aligned}
$$

Is F a conservative vector field?

An Important Identity

$$
\operatorname{div} \operatorname{curl} \mathbf{F}=\mathbf{0}
$$

or

$$
\nabla \cdot(\nabla \times \mathbf{F})=\mathbf{0}
$$

For a proof, see the text.

Finding Potential Functions

Recall that if $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is conservative, then there is a function f (called the potential function) such that $\nabla f=\mathbf{F}$? To find f we work with the following partial differential equations (PDEs).

$$
\begin{equation*}
\frac{\partial f}{\partial x}=M, \quad \frac{\partial f}{\partial y}=N, \quad \frac{\partial f}{\partial z}=P \tag{2}
\end{equation*}
$$

We illustrate below.
Example 2. Show that the vector field below is conservative and find its potential function.

$$
\mathbf{F}=\left(\sin y+z e^{x z}\right) \mathbf{i}+x \cos y \mathbf{j}+x e^{x z} \mathbf{k}
$$

We first compute the curl.

$$
\begin{aligned}
& \nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\sin y+z e^{x z} & x \cos y & x e^{x z}
\end{array}\right| \\
&=\mathbf{i}\left(\frac{\partial\left(x e^{x z}\right)}{\partial y}-\frac{\partial(x \cos y)}{\partial z}\right)-\mathbf{j}\left(\frac{\partial\left(x e^{x z}\right)}{\partial x}-\frac{\partial\left(\sin y+z e^{x z}\right)}{\partial z}\right) \\
&+\mathbf{k}\left(\frac{\partial(x \cos y)}{\partial x}-\frac{\partial\left(\sin y+z e^{x z}\right)}{\partial y}\right) \\
&=\mathbf{i}(0-0)-\mathbf{j}\left(e^{x z}+x z e^{x z}-e^{x z}-x z e^{x z}\right)+\mathbf{k}(\cos y-\cos y) \\
&=\mathbf{0}
\end{aligned}
$$

as expected.

To find the potential function, we first can integrate both sides of

$$
\frac{\partial f}{\partial x}=\sin y+z e^{x z}
$$

to obtain

$$
f=x \sin y+e^{x z}+g(y, z)
$$

Now comparing the \mathbf{j} component of \mathbf{F} with $\frac{\partial f}{\partial y}$ yields

$$
x \cos y=x \cos y+\frac{\partial g}{\partial y}
$$

It follows that g does not depend on y. In other words

$$
f=x \sin y+e^{x z}+h(z)
$$

Finally, we compare the \mathbf{k} component of \mathbf{F} with $\frac{\partial f}{\partial z}$ to obtain

$$
x e^{x z}=x e^{x z}+h^{\prime}(z)
$$

It follows that $h^{\prime}(z)=0$ and hence

$$
f(x, y, z)=x \sin y+e^{x z}+C
$$

where C is an arbitrary constant.

Line Integrals

Recall the two types of line integrals that we encountered in section 16.2.

Let $\mathbf{r}(t)$ be a smooth parametrization of a curve C for $a \leq t \leq b$ that lies in the domain of a real-valued function f.

Then the line integral of f over C is defined by

$$
\begin{equation*}
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t))\left|\mathbf{r}^{\prime}(t)\right| d t \tag{3}
\end{equation*}
$$

Suppose instead that we have a continuous vector field \mathbf{F} defined on a smooth curve C which is parameterized by the vector function $\mathbf{r}(t), a \leq t \leq b$. Then the line integral of \mathbf{F} along C is

$$
\begin{equation*}
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{t=a}^{t=b} \mathbf{F} \cdot d \mathbf{r} \tag{4}
\end{equation*}
$$

We must point out the various equivalent ways that (4) can be written.

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot \mathbf{T} d s & =\int_{t=a}^{t=b} \mathbf{F} \cdot \mathbf{T} d s \\
& =\int_{t=a}^{t=b} \mathbf{F} \cdot d \mathbf{r} \\
& =\int_{a}^{b} \mathbf{F} \cdot \frac{d \mathbf{r}}{d t} d t \\
& =\int_{a}^{b}\left(M \frac{d x}{d t}+N \frac{d y}{d t}+P \frac{d z}{d t}\right) d t \\
& =\int_{a}^{b} M d x+N d y+P d z
\end{aligned}
$$

Example 3. Evaluate the integrals below. In each case, specify whether the integral is more like (3) or (4).
a. $\int_{C} x y d x+z d y+(x+z) d z$

Here C can be parametrized by $\mathbf{r}(t)=\left\langle t^{2}, t, t^{3}\right\rangle, 0 \leq t \leq 1$.
This is more like (4). We have

$$
\begin{aligned}
x y d x & =t^{2} \cdot t \cdot 2 t d t=2 t^{4} d t \\
z d y & =t^{3} d t \\
(x+z) d z & =\left(t^{2}+t^{3}\right) \cdot 3 t^{2} d t=3 t^{4} d t+3 t^{5} d t
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{C} x y d x+z d y+(x+z) d z & =\int_{0}^{1} t^{3}+5 t^{4}+3 t^{5} d t \\
& =\left.\left(\frac{t^{4}}{4}+t^{5}+\frac{t^{6}}{2}\right)\right|_{0} ^{1} \\
& =7 / 4
\end{aligned}
$$

b. $I=\int_{C}\left(\sin y+z e^{x z}\right) d x+x \cos y d y+x e^{x z} d z$

Here C is any smooth curve from $A(2, \pi / 2,0)$ to $B(3,3 \pi / 2,1)$
Notice that if we set

$$
f(x, y, z)=x \sin y+e^{x z}
$$

then

$$
d f=\left(\sin y+z e^{x z}\right) d x+x \cos y d y+x e^{x z} d z \quad \text { (see Ex. (2) }
$$

It follows that the integral is path independent. Hence

$$
\begin{aligned}
I & =\int_{A}^{B} d f \\
& =f(B)-f(A) \\
& =\left(3 \sin \frac{3 \pi}{2}+e^{3}\right)-\left(2 \sin \frac{\pi}{2}+1\right) \\
& =e^{3}-6
\end{aligned}
$$

Notice that this integral is more like (4).
c. $\int_{C}(x y+1) d s$

Here C is the lower semicircle $y=-\sqrt{9-x^{2}}$, traversed in the positive direction.

This integral is like (3). Notice that C be parametrized by the vector equation

$$
\mathbf{r}(t)=t \mathbf{i}-\sqrt{9-t^{2}} \mathbf{j}, \quad-3 \leq t \leq 3
$$

Then

$$
\mathbf{r}^{\prime}(t)=\mathbf{i}-\frac{t}{\sqrt{9-t^{2}}} \mathbf{k}
$$

and

$$
\left|\mathbf{r}^{\prime}(t)\right|=\frac{3}{\sqrt{9-t^{2}}}
$$

So by (3)

$$
\begin{aligned}
\int_{C}(x y+1) d s & =\int_{-3}^{3}\left(1-t \sqrt{9-t^{2}}\right) \frac{3}{\sqrt{9-t^{2}}} d t \\
& =-3 \int_{-3}^{3} t d t+\int_{-3}^{3} \frac{3}{\sqrt{9-t^{2}}} d t \\
& =0+\left.3 \sin ^{-1} \frac{t}{3}\right|_{-3} ^{3} \\
& =3 \pi
\end{aligned}
$$

d. Let $\mathbf{F}=(x-z) \mathbf{i}+x \mathbf{k}$ be a velocity field flowing through a region in space and let C be the smooth curve defined by the vector equation $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{k}, 0 \leq t \leq 2 \pi / 3$. Find the flow along C in the direction of increasing t.

This is like (4). Now

$$
\begin{aligned}
\mathbf{F}(\mathbf{r}(t)) & =(\cos t-\sin t) \mathbf{i}+\cos t \mathbf{k} \\
\frac{d \mathbf{r}}{d t} & =-\sin t \mathbf{i}+\cos t \mathbf{k}
\end{aligned}
$$

Hence

$$
\mathbf{F} \cdot d \mathbf{r}=(1-\sin t \cos t) d t
$$

So that

$$
\begin{aligned}
\text { Flow } & =\int_{C} \mathbf{F} \cdot d \mathbf{r} \\
& =\int_{0}^{2 \pi / 3}(1-\sin t \cos t) d t \\
& =\left.\left(t-\frac{\sin ^{2} t}{2}\right)\right|_{0} ^{2 \pi / 3} \\
& =\frac{2 \pi}{3}-\frac{3}{8}
\end{aligned}
$$

