
15.10 1

15.10 Change of Variables

Recall the formula for change of variables (u-substitution) from first

semester calculus.

(1)

ˆ b

a

f (x) dx =

ˆ d

c

f (g(u))g′(u) du

where x = g(u), a = g(c), and b = g(d). We illustrate the method below.

Example 1. Evaluate the following integral.

(2)

ˆ 4

1

x√
1 + 3x2

dx

Although many students can evaluate the above integral directly, it is

often advantageous to use the method called u-substitution to avoid

possible arithmetic mistakes. A common choice would be to let

u = 1+ 3x2. Then du = 6x dx, u(1) = 4, and u(4) = 49 so that the integral

in (2) becomes
ˆ 4

1

x√
1 + 3x2

dx =
1

6

ˆ 4

1

6x dx√
1 + 3x2

=
1

6

ˆ 49

4

du√
u

=
1

3

√
u

49

4

=
5

3

Question - In the above example, it is clear that f (x) = x√
1+3x2

. What is

g(u)?



15.10 2

We claim that x = g(u) = +
√

(u− 1)/3. To see this, first note that

g(4) = 1 and g(49) = 4. Also,

dx

du
= g′(u) =

1

6

1
√

(u− 1)/3

so that

f (g(u))g′(u) du =

√

(u− 1)/3
√

1 + 3(g(u))2
1

6

1
√

(u− 1)/3
du

=
1

6

du√
u

as expected.

We seek to find an analog to (1) for double (and eventually triple)

integrals. In what follows, it will be helpful to make a few more

observations about u-substitution.

1. The success of the method depends upon finding a suitable

transformation, call it T , from an unknown interval [c, d] to the

interval [a, b]. In fact, we need T to be one-to-one with a continuous

(nonzero) derivative.

2. The factor
dx

du
= g′(u) seems to be very important.

So we need to find two-dimensional analogs of both T and the
dx

du
.
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Consider the following example.

Example 2. Let T : R2 → R
2 be defined by T (u, v) = (3u+2v, v) = (x, y).

We like to think of T as a map (function) from the uv-plane to the

xy-plane. Now let S = [0, 1]× [0, 1]. What is the image of S under the

map T? In other words, what is R = T (S)?

We claim that R is the parallelogram with corners

(0, 0), (3, 0), (2, 1), (5, 1). In other words,

R = {(x, y) : 2y ≤ x ≤ 2y + 3, 0 ≤ y ≤ 1}

Of course,

S = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}

The mapping T in Example 2 is an example of a C1-transformation.

More specifically, we have the following.

Definition. Let T : R2 → R
2 be defined by

T (u, v) = (g(u, v), h(u, v)) = (x, y). Then T is called a C1-transformation

if g and h have continuous first-order partial derivatives.
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Now let’s see how such a change of variables will affect a double

integral. We continue with the previous example.

Example 3. Let S, T, and R = T (S) be as given in Example 2.

Compare the integrals below if f (x, y) = 1.

¨

R

f (x, y) dx dy =

¨

R

1 dx dy

= area of R

= 3

¨

S

f (x(u, v), x(u, v)) du dv =

¨

S

1 du dv

= area of S

= 1

It should come is no surprise that the integrals are not equal. We are

missing whatever the analog of
dx

du
in the two-dimensional case.
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Definition. Let T : R2 → R
2 be a C1-transformation defined by

T (u, v) = (g(u, v), h(u, v)) = (x, y). Then the Jacobian of T is defined by

∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣

∣

∣

∣

∣

∣

∣

∣

=
∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v

Example 4. Find the Jacobian of our running example.

x = 3u + 2v =⇒ ∂x

∂u
= 3,

∂x

∂v
= 2

and

y = v =⇒ ∂y

∂u
= 0,

∂y

∂v
= 1

It follows that
∂(x, y)

∂(u, v)
= 3− 0 = 3. How convenient.
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The next theorem is typically proven in an advanced calculus class.

Theorem 1. Suppose that T is a C1-transformation whose Jacobian is

nonzero and maps a region S in the uv-plane onto a region R in the

xy-plane. Suppose that f is continuous on R and that S and R are

“nice” regions. Finally, suppose that T is one-to-one, except perhaps

on the boundary of S. Then

(3)

¨

R

f (x, y) dA =

¨

S

f (x(u, v), y(u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv

Example 5. Let R be the region bounded by the triangle with vertices

(0, 0), (1, 2), and (5, 0). Evaluate the integral below.

(4)

¨

R

cos

(

2x− y

x + 2y

)

dx dy

1 5

2

R

x

y
Observe that the integral in (4) can be

rewritten as

(5)

ˆ 1

0

ˆ 2x

0

+

ˆ 5

1

ˆ 5−x
2

0

cos

(

2x− y

x + 2y

)

dy dx

Unfortunately, the above integrals cannot be evaluated using

elementary antiderivatives. Instead we try a change of variables. Let

u = 2x−y
c and v = x+2y

c , for some constant c. The obvious choice is to set

c = 1 but we can avoid a bunch of annoying fractions if we set c = 5.
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Now let T−1(x, y) =
(

2x−y
5 , x+2y

5

)

and let S = T−1(R).

Step 1. Find S.

Notice that T−1(0, 0) = (0, 0), T−1(1, 2) = (0, 1), and

T−1(5, 0) = (2, 1). Since T−1 is linear in both coordinates, S will

be a triangle in the uv-plane.

2

1

S

u

v

v = u/2

Step 2. Now find T . So consider the system

5u = 2x− y

5v = x + 2y

Multiplying the first equation by 2 and adding the resulting

equation to the second yields

5x = 10u + 5v or x = 2u + v

Using a similar technique produces

y = 2v − u

In other words,

T (u, v) = (2u + v, 2v − u)
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Step 3. Find the Jacobian.

∂(x, y)

∂(u, v)
=

∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v

= (2)(2)− (−1)(1) = 5

Step 4. Now rewrite (4) using Theorem 1 and evaluate.

¨

R

cos

(

2x− y

x + 2y

)

dx dy =

¨

S

cos
(u

v

)

5 du dv

= 5

ˆ 1

0

ˆ 2v

0

cos
(u

v

)

du dv

= 5

ˆ 1

0

v sin
(u

v

) u=2v

u=0

dv

= 5 sin 2

ˆ 1

0

v dv

=
5 sin 2

2
≈ 2.2732435671

Remark. Compare the result above with (5).

´ 1

0

´ 2x

0 cos
(

2x−y
x+2y

)

dy dx +
´ 5

1

´ 5−x
2

0 cos
(

2x−y
x+2y

)

dy dx

Hint: Click on the above links and add the results.

https://tinyurl.com/52d3bp2s
https://tinyurl.com/3erfjns6
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b

b

b

b R

x

y

A

B

C

D

y = ax

y = bx

y =
d

x

y =
c

x

Figure 1: Region R bounded by two hyperbolas

Example 6. Let b > a > 0, d > c > 0, and let R be the shaded region

shown in Figure 1. We leave it as an exercise to show that

A = A(
√

c/a,
√
ac), B = B(

√

d/a,
√
ad)

C = C(
√

d/b,
√
bd), D = D(

√

c/b,
√
bc)

Now let T (u, v) = (u/v, v) = (x, y). Find T−1 and sketch the region

S = T−1(R) in the uv-plane.

We claim that S is shaded region shown in Figure 2.

dc

b

b

b

b

u

v

T−1(A)

T−1(B)

T−1(C)

T−1(D)

Figure 2: S = T−1(R)
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It is pretty easy to see that T−1(x, y) = (xy, y) = (u, v) so that, for

example, T−1(A) = T−1(
√

c/a,
√
ac) = (c,

√
ac), etc. To see why radial

lines are mapped to radical curves, let x ≥ 0 and let P = P (x, y) be an

arbitrary point on the line y = ax. Then P = (x, ax) and

T−1(P ) = T−1(x, ax)

= (ax2, ax) = (u, v)

Rearranging the first coordinate equation yields

x =
√

u/a

It follows that

v = ax = a
√

u/a =
√
au

In other words, all of the points the orange radial line in Figure 1 get

mapped to the radical function v =
√
au as shown in Figure 2. Similarly,

the points on the radial line y = bx get mapped to the radical function

v =
√
bu.

Now let Q = (x, d/x), x > 0 be an arbitrary point on the hyperbola

y = d/x (shown in green in Fig. 1). Then

T−1(Q) = T−1(x, d/x)

= (d, d/x)

In other words, all of the quadrant I points on the hyperbola y = d/x get

mapped to the vertical line u = d. See the green line in Figure 2.
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b

b

b

b

x

y

R

y = 3x

y = 5x

y =
6

x

y =
2

x

Figure 3: Region R from Example 7 (not to scale)

Example 7. Find the area of the shaded region R shown in Figure 3.

Continuing with the notation from the previous example, we have

Area of R =

¨

R

1 dA =

¨

S

1

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv

62 u

v
We leave it as an exercise to show that
∂(x,y)
∂(u,v) = 1/v. It follows from the previous ex-

ample, that

¨

S

1

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv =

ˆ 6

2

ˆ

√
5u

√
3u

1

v
dv du

=

ˆ 6

2

ln v
v=

√
5u

v=
√
3u

du

=
ln 5/3

2

ˆ 6

2

du

= 2 ln 5/3
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Example 8. Let R be the quadrilateral with vertices (0, 0), (1,−1),

(5/2, 1/2), (3/2, 3/2). Evaluate the following integral.

(6)

¨

R

(x + y)ex
2−y2 dx dy

This doesn’t look too friendly. However, notice that since the exponent

factors as (x− y)(x + y), so we try u = x−y
2 and v = x+y

2 . It is easy to

show that this implies x = u + v and y = v − u. It is routine to show that
∣

∣

∣

∂(x,y)
∂(u,v)

∣

∣

∣
= 2 and that if we let T−1(x, y) =

(

x−y
2 , x+y

2

)

, then S = T−1(R) is a

rectangle in the uv-plane with vertices (0, 0), (1, 0), (1, 3/2), (0, 3/2). See

the figure below.

1

3/2

u

vThus
¨

R

(x + y)ex
2−y2 dx dy =

¨

S

2ve4uv 2 du dv

=

ˆ 3/2

0

ˆ 1

0

4ve4uv du dv

=

ˆ 3/2

0

e4uv
u=1

u=0

dv

=

ˆ 3/2

0

(e4v − 1) dv

=
e6 − 7

4

Remark. Notice that we must use integration by parts if we wish to

integrate with respect to v first.


