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15.10 Change of Variables

Recall the formula for change of variables (u-substitution) from first
semester calculus.

(1) /f M—/f

where © = g(u), a ), and b = g(d). We illustrate the method below.

Example 1. Evaluate the following integral.

2) /1 ﬁ dz

Although many students can evaluate the above integral directly, it is
often advantageous to use the method called u-substitution to avoid
possible arithmetic mistakes. A common choice would be to let

u =1+ 3z%. Then du = 6z dx, u(1) = 4, and u(4) = 49 so that the integral
n (2) becomes

/ T g 1 [* 6xdx
—— dxr = — -
1 V 1+ 322 6J1 V1+ 322
1 9 du
6/, Vu
_ _9
B 3

Question - In the above example, it is clear that f(z) = —=—;. What s
9(u)?
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We claim that = = g(u) = ++/(u — 1)/3. To see this, first note that
g(4) =1and g(49) = 4. Also,

dx , _1 1
@ZQ(U)—G (u—1)/3
so that
| W—1/3 1 1
U U dU: _ du
flg(w))g'(u) \/1+3(g(u))26 \/(U—l)/g

1 du
_6%

as expected.

We seek to find an analog to (1) for double (and eventually triple)
integrals. In what follows, it will be helpful to make a few more
observations about u-substitution.

1. The success of the method depends upon finding a suitable
transformation, call it 7, from an unknown interval [c, d] to the
interval [a, b]. In fact, we need T" to be one-to-one with a continuous
(nonzero) derivative.

d .
2. The factor d_:C = ¢'(u) seems to be very important.
u

. . : d
So we need to find two-dimensional analogs of both 7" and the ﬁ
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Consider the following example.
Example 2. Let 7: R? — R? be defined by T'(u,v) = (3u+2v,v) = (z,y).

We like to think of 7" as a map (function) from the uv-plane to the
zy-plane. Now let S = [0, 1] x [0, 1]. What is the image of S under the
map T'? In other words, what is R = T'(S5)?

We claim that R is the parallelogram with corners
(0,0),(3,0),(2,1),(5,1). In other words,

R={(z,y): 2y<x<2y+3, 0<y<1}
Of course,
S={(u,v):0<u<l 0<v <1}
The mapping 7" in Example 2 is an example of a C*-transformation.

More specifically, we have the following.

Definition. Let 7: R? — R? be defined by
T(u,v) = (g(u,v), h(u,v)) = (z,y). Then T is called a C''-transformation
if g and h have continuous first-order partial derivatives.
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Now let’'s see how such a change of variables will affect a double
integral. We continue with the previous example.

Example 3. Let S, T, and R = T'(S) be as given in Example 2.
Compare the integrals below if f(z,y) = 1.

//Rf(x,y)dxdy ://Rldxdy

= area of R

=3

//Sf(a:(u,v),x(u,v))dudv—//Sldudv

= areaof S
=1
It should come is no surprise that the integrals are not equal. We are

L dx . . .
missing whatever the analog of d—x in the two-dimensional case.
Uu
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Definition. Let 7: R? — R? be a C'-transformation defined by
T(u,v) = (g(u,v), h(u,v)) = (z,y). Then the Jacobian of T is defined by

or Ox
z,y) |ou Ov| Oxdy Oy oz
O(u, v) oy Oy T Oudv  Ou v
ou v

Example 4. Find the Jacobian of our running example.

ox ox
r=3u+2v = 5 3, 50
and
B 8y_ 8y_
y=v = 5 "o !

0(z,y)
O(u, v)

It follows that = 3 — 0 = 3. How convenient.
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The next theorem is typically proven in an advanced calculus class.

Theorem 1. Suppose that 7" is a C'-transformation whose Jacobian is
nonzero and maps a region S in the uv-plane onto a region R in the
xy-plane. Suppose that f is continuous on R and that S and R are
“nice” regions. Finally, suppose that T' is one-to-one, except perhaps
on the boundary of S. Then

@ [ senai [[ s [G5

du dv

Example 5. Let R be the region bounded by the triangle with vertices
(0,0),(1,2), and (5,0). Evaluate the integral below.

(4) // cos (iﬁ: y) dx dy

Observe that the integral in (4) can be
rewritten as

1 p2z 5 5_Tx 2y 24
5) // +// COS( u )dydm
0 Jo 1 Jo T+ 2y R

1 L

Y

Unfortunately, the above integrals cannot be evaluated using
elementary antiderivatives. Instead we try a change of variables. Let

u = Qxc_y and v = &ng for some constant c¢. The obvious choice is to set
¢ = 1 but we can avoid a bunch of annoying fractions if we set ¢ = 5.




15.10

Now let T-(z,y) = (22, 22) and let S = T7Y(R).

Step 1.

Step 2.

5 7 5
Find S.

Notice that 7-1(0,0) = (0,0), T"%(1,2) = (0,1), and
T-1(5,0) = (2,1). Since T! is linear in both coordinates, S will
be a triangle in the uv-plane.

()

Now find T'. So consider the system

bu =2x —vy
v=ux+2y

Multiplying the first equation by 2 and adding the resulting
equation to the second yields

br=10u+5v or z=2u+v
Using a similar technique produces
Yy=20—u
In other words,

T(u,v) = (2u+v,2v — u)
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Step 3. Find the Jacobian.

O(x,y) Oxdy Oy Ox
O(u,v)  Oudv Ou v

=(2)(2) = (=D(1) =5

Step 4. Now rewrite (4) using Theorem 1 and evaluate.

//Rcos (ix_l_;z) dx dy = //Scos (%) bdu dv
= 5/01/OQUCOS <%) du dv
= 5/01?Jsin (%) o

dv
1
= 5sin2/ vdv
0

u=0
B 5sin 2

~2 2.2732435671

Remark. Compare the result above with (5).

£ 0=

f()l 02417 COS (iin) dydx + flo foT COS (iﬁ;y/) dy dx

Hint: Click on the above links and add the results.


https://tinyurl.com/52d3bp2s
https://tinyurl.com/3erfjns6
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Figure 1: Region R bounded by two hyperbolas

Example 6. Letb > a > 0, d > ¢ > 0, and let R be the shaded region
shown in Figure 1. We leave it as an exercise to show that

AZA(M?@)? B:B(\/%v\/@)
C:C(M,M), DZD(J%?\/%)

Now let T'(u,v) = (u/v,v) = (z,y). Find T—! and sketch the region
S =T~ YR) in the uv-plane.

We claim that S is shaded region shown in Figure 2.

Figure 2: S = T7'(R)
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It is pretty easy to see thatT Yz, y) = (zy,y) = (u,v) so that, for
example, T 1(\/c/a, \/7 (¢, v/ac), etc. To see why radial

lines are mapped to radlcal curves, Iet x> 0andlet P = P(z,y) be an
arbitrary point on the line y = ax. Then P = (z,az) and

T YP)=T Yz, ax)
= (az?, az) = (u,v)

Rearranging the first coordinate equation yields

=Vu/a

It follows that

v:aa::a\/W:\/@

In other words, all of the points the orange radial line in Figure 1 get
mapped to the radical function v = \/au as shown in Figure 2. Similarly,
the points on the radial line y = bx get mapped to the radical function

— vbu.

Now let Q = (z,d/z), x > 0 be an arbitrary point on the hyperbola
y = d/x (shown in green in Fig. 1). Then

T7HQ) =T '(z,d/x)
- (dv d/x)

In other words, all of the quadrant | points on the hyperbola y = d/x get
mapped to the vertical line u = d. See the green line in Figure 2.
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Figure 3: Region R from Example 7 (not to scale)

Example 7. Find the area of the shaded region R shown in Figure 3.

Continuing with the notation from the previous example, we have

AreaofR—//ldA //|

We leave it as an exercise to show that
—ggigg = 1/v. It follows from the previous ex-

ample, that

du dv

/8

Vou g
dudv—// —dv du
J3u U
:/ lnv du
2 v=+3u

] 6
_ n5/3/ "
2 Js

=2In5/3

[N N VR N

o= L L -
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Example 8. Let R be the quadrilateral with vertices (0,0), (1, —1),
(5/2,1/2),(3/2,3/2). Evaluate the following integral.

(6) //R(:z:' + y)e‘cQ—y2 dx dy

This doesn’t look too friendly. However, notice that since the exponent
factors as (z — y)(x +y), sowe try u = =¥ and v = 2. ltis easy to
show that this implies z = u + v and y = v — u. Itis routine to show that
|g§u7 ;| 2 and that if we let 7 = (5%, 5%),then S=T"'(R)is a
rectangle in the wv-plane with vertlce s (0,0),(1,0), (1,3/2),(0,3/2). See
the figure below.

Thus Uy

//a:+y Y dxdy—//2064““2dudv 3/2
3/2
/ / 4ve*™ du dv 1 U
3/2
= / gt dv
0 u=0

3/2
:/ (e* — 1) dv
0

_66—7
4

Remark. Notice that we must use integration by parts if we wish to
integrate with respect to v first.



