15.10 Change of Variables

Recall the formula for change of variables (u-substitution) from first semester calculus.

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\int_{c}^{d} f(g(u)) g^{\prime}(u) d u \tag{1}
\end{equation*}
$$

where $x=g(u), a=g(c)$, and $b=g(d)$. We illustrate the method below.

Example 1. Evaluate the following integral.
(2)

$$
\int_{1}^{4} \frac{x}{\sqrt{1+3 x^{2}}} d x
$$

Although many students can evaluate the above integral directly, it is often advantageous to use the method called u-substitution to avoid possible arithmetic mistakes. A common choice would be to let $u=1+3 x^{2}$. Then $d u=6 x d x, u(1)=4$, and $u(4)=49$ so that the integral in (2) becomes

$$
\begin{aligned}
\int_{1}^{4} \frac{x}{\sqrt{1+3 x^{2}}} d x & =\frac{1}{6} \int_{1}^{4} \frac{6 x d x}{\sqrt{1+3 x^{2}}} \\
& =\frac{1}{6} \int_{4}^{49} \frac{d u}{\sqrt{u}} \\
& =\left.\frac{1}{3} \sqrt{u}\right|_{4} ^{49}=\frac{5}{3}
\end{aligned}
$$

Question - In the above example, it is clear that $f(x)=\frac{x}{\sqrt{1+3 x^{2}}}$. What is $g(u)$?

We claim that $x=g(u)=+\sqrt{(u-1) / 3}$. To see this, first note that $g(4)=1$ and $g(49)=4$. Also,

$$
\frac{d x}{d u}=g^{\prime}(u)=\frac{1}{6} \frac{1}{\sqrt{(u-1) / 3}}
$$

so that

$$
\begin{aligned}
f(g(u)) g^{\prime}(u) d u & =\frac{\sqrt{(u-1) / 3}}{\sqrt{1+3(g(u))^{2}}} \frac{1}{6} \frac{1}{\sqrt{(u-1) / 3}} d u \\
& =\frac{1}{6} \frac{d u}{\sqrt{u}}
\end{aligned}
$$

as expected.
We seek to find an analog to (1) for double (and eventually triple) integrals. In what follows, it will be helpful to make a few more observations about u-substitution.

1. The success of the method depends upon finding a suitable transformation, call it T, from an unknown interval $[c, d]$ to the interval $[a, b]$. In fact, we need T to be one-to-one with a continuous (nonzero) derivative.
2. The factor $\frac{d x}{d u}=g^{\prime}(u)$ seems to be very important.

So we need to find two-dimensional analogs of both T and the $\frac{d x}{d u}$.

Consider the following example.
Example 2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $T(u, v)=(3 u+2 v, v)=(x, y)$.
We like to think of T as a map (function) from the $u v$-plane to the $x y$-plane. Now let $S=[0,1] \times[0,1]$. What is the image of S under the map T ? In other words, what is $R=T(S)$?

We claim that R is the parallelogram with corners $(0,0),(3,0),(2,1),(5,1)$. In other words,

$$
R=\{(x, y): 2 y \leq x \leq 2 y+3,0 \leq y \leq 1\}
$$

Of course,

$$
S=\{(u, v): 0 \leq u \leq 1,0 \leq v \leq 1\}
$$

The mapping T in Example 2 is an example of a C^{1}-transformation. More specifically, we have the following.

Definition. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by
$T(u, v)=(g(u, v), h(u, v))=(x, y)$. Then T is called a C^{1}-transformation if g and h have continuous first-order partial derivatives.

Now let's see how such a change of variables will affect a double integral. We continue with the previous example.
Example 3. Let S, T, and $R=T(S)$ be as given in Example 2. Compare the integrals below if $f(x, y)=1$.

$$
\begin{aligned}
\iint_{R} f(x, y) d x d y & =\iint_{R} 1 d x d y \\
& =\text { area of } R \\
& =3 \\
\iint_{S} f(x(u, v), x(u, v)) d u d v & =\iint_{S} 1 d u d v \\
& =\text { area of } S \\
& =1
\end{aligned}
$$

It should come is no surprise that the integrals are not equal. We are missing whatever the analog of $\frac{d x}{d u}$ in the two-dimensional case.

Definition. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a C^{1}-transformation defined by
$T(u, v)=(g(u, v), h(u, v))=(x, y)$. Then the Jacobian of T is defined by

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial y}{\partial u} \frac{\partial x}{\partial v}
$$

Example 4. Find the Jacobian of our running example.

$$
x=3 u+2 v \quad \Longrightarrow \quad \frac{\partial x}{\partial u}=3, \frac{\partial x}{\partial v}=2
$$

and

$$
y=v \quad \Longrightarrow \quad \frac{\partial y}{\partial u}=0, \frac{\partial y}{\partial v}=1
$$

It follows that $\frac{\partial(x, y)}{\partial(u, v)}=3-0=3$. How convenient.

The next theorem is typically proven in an advanced calculus class.
Theorem 1. Suppose that T is a C^{1}-transformation whose Jacobian is nonzero and maps a region S in the $u v$-plane onto a region R in the $x y$-plane. Suppose that f is continuous on R and that S and R are "nice" regions. Finally, suppose that T is one-to-one, except perhaps on the boundary of S. Then

$$
\begin{equation*}
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \tag{3}
\end{equation*}
$$

Example 5. Let R be the region bounded by the triangle with vertices $(0,0),(1,2)$, and $(5,0)$. Evaluate the integral below.

$$
\begin{equation*}
\iint_{R} \cos \left(\frac{2 x-y}{x+2 y}\right) d x d y \tag{4}
\end{equation*}
$$

Observe that the integral in (4) can be rewritten as
(5) $\int_{0}^{1} \int_{0}^{2 x}+\int_{1}^{5} \int_{0}^{\frac{5-x}{2}} \cos \left(\frac{2 x-y}{x+2 y}\right) d y d x$

Unfortunately, the above integrals cannot be evaluated using elementary antiderivatives. Instead we try a change of variables. Let $u=\frac{2 x-y}{c}$ and $v=\frac{x+2 y}{c}$, for some constant c. The obvious choice is to set $c=1$ but we can avoid a bunch of annoying fractions if we set $c=5$.

Now let $T^{-1}(x, y)=\left(\frac{2 x-y}{5}, \frac{x+2 y}{5}\right)$ and let $S=T^{-1}(R)$.
Step 1. Find S.
Notice that $T^{-1}(0,0)=(0,0), T^{-1}(1,2)=(0,1)$, and
$T^{-1}(5,0)=(2,1)$. Since T^{-1} is linear in both coordinates, S will be a triangle in the $u v$-plane.

Step 2. Now find T. So consider the system

$$
\begin{aligned}
& 5 u=2 x-y \\
& 5 v=x+2 y
\end{aligned}
$$

Multiplying the first equation by 2 and adding the resulting equation to the second yields

$$
5 x=10 u+5 v \quad \text { or } \quad x=2 u+v
$$

Using a similar technique produces

$$
y=2 v-u
$$

In other words,

$$
T(u, v)=(2 u+v, 2 v-u)
$$

Step 3. Find the Jacobian.

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(u, v)} & =\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial y}{\partial u} \frac{\partial x}{\partial v} \\
& =(2)(2)-(-1)(1)=5
\end{aligned}
$$

Step 4. Now rewrite (4) using Theorem 1 and evaluate.

$$
\begin{aligned}
\iint_{R} \cos \left(\frac{2 x-y}{x+2 y}\right) d x d y & =\iint_{S} \cos \left(\frac{u}{v}\right) 5 d u d v \\
& =5 \int_{0}^{1} \int_{0}^{2 v} \cos \left(\frac{u}{v}\right) d u d v \\
& =\left.5 \int_{0}^{1} v \sin \left(\frac{u}{v}\right)\right|_{u=0} ^{u=2 v} d v \\
& =5 \sin 2 \int_{0}^{1} v d v \\
& =\frac{5 \sin 2}{2} \approx 2.2732435671
\end{aligned}
$$

Remark. Compare the result above with (5).

$$
\int_{0}^{1} \int_{0}^{2 x} \cos \left(\frac{2 x-y}{x+2 y}\right) d y d x+\underline{\int_{1}^{5} \int_{0}^{\frac{5-x}{2}} \cos \left(\frac{2 x-y}{x+2 y}\right) d y d x}
$$

Hint: Click on the above links and add the results.

Figure 1: Region R bounded by two hyperbolas
Example 6. Let $b>a>0, d>c>0$, and let R be the shaded region shown in Figure 1. We leave it as an exercise to show that

$$
\begin{aligned}
& A=A(\sqrt{c / a}, \sqrt{a c}), B=B(\sqrt{d / a}, \sqrt{a d}) \\
& C=C(\sqrt{d / b}, \sqrt{b d}), D=D(\sqrt{c / b}, \sqrt{b c})
\end{aligned}
$$

Now let $T(u, v)=(u / v, v)=(x, y)$. Find T^{-1} and sketch the region $S=T^{-1}(R)$ in the $u v$-plane.

We claim that S is shaded region shown in Figure 2.

Figure 2: $S=T^{-1}(R)$

It is pretty easy to see that $T^{-1}(x, y)=(x y, y)=(u, v)$ so that, for example, $T^{-1}(A)=T^{-1}(\sqrt{c / a}, \sqrt{a c})=(c, \sqrt{a c})$, etc. To see why radial lines are mapped to radical curves, let $x \geq 0$ and let $P=P(x, y)$ be an arbitrary point on the line $y=a x$. Then $P=(x, a x)$ and

$$
\begin{aligned}
T^{-1}(P) & =T^{-1}(x, a x) \\
& =\left(a x^{2}, a x\right)=(u, v)
\end{aligned}
$$

Rearranging the first coordinate equation yields

$$
x=\sqrt{u / a}
$$

It follows that

$$
v=a x=a \sqrt{u / a}=\sqrt{a u}
$$

In other words, all of the points the orange radial line in Figure 1 get mapped to the radical function $v=\sqrt{a u}$ as shown in Figure 2. Similarly, the points on the radial line $y=b x$ get mapped to the radical function $v=\sqrt{b u}$.

Now let $Q=(x, d / x), x>0$ be an arbitrary point on the hyperbola $y=d / x$ (shown in green in Fig. 1). Then

$$
\begin{aligned}
T^{-1}(Q) & =T^{-1}(x, d / x) \\
& =(d, d / x)
\end{aligned}
$$

In other words, all of the quadrant I points on the hyperbola $y=d / x$ get mapped to the vertical line $u=d$. See the green line in Figure 2.

Figure 3: Region R from Example 7 (not to scale)
Example 7. Find the area of the shaded region R shown in Figure 3. Continuing with the notation from the previous example, we have

$$
\text { Area of } R=\iint_{R} 1 d A=\iint_{S} 1\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

We leave it as an exercise to show that $\frac{\partial(x, y)}{\partial(u, v)}=1 / v$. It follows from the previous example, that

$$
\begin{aligned}
\iint_{S} 1\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v & =\int_{2}^{6} \int_{\sqrt{3 u}}^{\sqrt{5 u}} \frac{1}{v} d v d u \\
& =\left.\int_{2}^{6} \ln v\right|_{v=\sqrt{3 u}} ^{v=\sqrt{5 u}} d u \\
& =\frac{\ln 5 / 3}{2} \int_{2}^{6} d u \\
& =2 \ln 5 / 3
\end{aligned}
$$

Example 8. Let R be the quadrilateral with vertices $(0,0),(1,-1)$, $(5 / 2,1 / 2),(3 / 2,3 / 2)$. Evaluate the following integral.
(6)

$$
\iint_{R}(x+y) e^{x^{2}-y^{2}} d x d y
$$

This doesn't look too friendly. However, notice that since the exponent factors as $(x-y)(x+y)$, so we try $u=\frac{x-y}{2}$ and $v=\frac{x+y}{2}$. It is easy to show that this implies $x=u+v$ and $y=v-u$. It is routine to show that $\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=2$ and that if we let $T^{-1}(x, y)=\left(\frac{x-y}{2}, \frac{x+y}{2}\right)$, then $S=T^{-1}(R)$ is a rectangle in the $u v$-plane with vertices $(0,0),(1,0),(1,3 / 2),(0,3 / 2)$. See the figure below.

Thus

$$
\begin{aligned}
\iint_{R}(x+y) e^{x^{2}-y^{2}} d x d y & =\iint_{S} 2 v e^{4 u v} 2 d u d v \\
& =\int_{0}^{3 / 2} \int_{0}^{1} 4 v e^{4 u v} d u d v \\
& =\left.\int_{0}^{3 / 2} e^{4 u v}\right|_{u=0} ^{u=1} d v \\
& =\int_{0}^{3 / 2}\left(e^{4 v}-1\right) d v \\
& =\frac{e^{6}-7}{4}
\end{aligned}
$$

Remark. Notice that we must use integration by parts if we wish to integrate with respect to v first.

