Integration and Spherical Coordinates

Definition. Spherical coordinates represent a point P in space

 by the ordered triple (ρ, ϕ, θ) where1. ρ is the distance from P to the origin.
2. ϕ is the angle that $\overrightarrow{O P}$ makes with the positive z-axis $(0 \leq \phi \leq \pi)$.
3. θ is the angle from cylindrical coordinates.

Remark. In particular, $\rho \geq 0$.

The following equations relate spherical coordinates to rectangular and cylindrical coordinates.

$$
\begin{aligned}
& r=\rho \sin \phi, \quad x=r \cos \theta=\rho \sin \phi \cos \theta \\
& z=\rho \cos \phi, \quad y=r \sin \theta=\rho \sin \phi \sin \theta \\
& \rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{r^{2}+z^{2}}
\end{aligned}
$$

Example 1. Constant-Coordinates Equations

Describe the objects generated by the constant equations:

$$
\begin{aligned}
\rho & =\rho_{0} \\
\phi & =\phi_{0} \\
\theta & =\theta_{0}
\end{aligned}
$$

Example 2. Converting Spherical Coordinates

Consider the spherical equation $\phi=\frac{\pi}{3}$. Find the equivalent cylindrical and rectangular equations.

1. First Attempt:

(a) Cylindrical Coordinate Equation: We've already looked at the cross-sections $z=$ const (≥ 0). Notice that the if $y=0$ we must have the equation $\tan \phi=x / z$. Thus

$$
\begin{aligned}
& \frac{x}{z}=\tan \phi=\sqrt{3} \\
& \Longrightarrow x=\sqrt{3} z \\
& \Longrightarrow x^{2}=3 z^{2} \\
& \Longrightarrow r^{2}=3 z^{2} \quad \text { (Why?) }
\end{aligned}
$$

(b) Rectangular Coordinate Equation: The last equation implies

$$
x^{2}+y^{2}=3 z^{2}
$$

2. Alternate Approach:

$$
\begin{aligned}
\phi=\frac{\pi}{3} & \Longrightarrow \tan \phi=\sqrt{3} \\
& \Longrightarrow \frac{r}{z}=\sqrt{3} \\
& \Longrightarrow r^{2}=3 z^{2} \\
& \Longrightarrow \ldots
\end{aligned}
$$

Suppose that $f(\rho, \phi, \theta)$ is defined on a closed bounded region D in space. Can we define the integral of f over D ? Proceeding as we did above (that is, partitioning the region D, etc.), we obtain the following (Riemann) sum

$$
S_{n}=\sum_{k=1}^{n} f\left(\rho_{k}, \phi_{k}, \theta_{k}\right) \triangle V_{k}
$$

where $\triangle V_{k}=\rho_{k}^{2} \sin \phi_{k} \triangle \rho_{k} \triangle \phi_{k} \triangle \theta_{k}$.

Now we take the limit of the above expression as $\|P\| \rightarrow 0$, where $\|P\|$ is the norm of the partition P. If the limit exists we say that f is integrable over D and write

$$
\begin{aligned}
\lim _{n \rightarrow \infty} S_{n} & =\iiint_{D} f d V \\
& =\iiint_{D} f(\rho, \phi, \theta) \rho^{2} \sin \phi d \rho d \phi d \theta
\end{aligned}
$$

Once again, if f is continuous over the closed bounded region D then f is integrable (as long as D is "reasonable").

Example 3. Integration - Spherical Coordinates

Evaluate the triple integral below.

$$
\begin{aligned}
& I=\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{\cos \phi}^{2} 3 \rho^{2} \sin \phi d \rho d \phi d \theta \\
I= & \left.2 \pi \int_{0}^{\pi / 3} \rho^{3} \sin \phi\right|_{\rho=\cos \phi} ^{\rho=2} d \phi \\
= & 2 \pi\left(8 \int_{0}^{\pi / 3} \sin \phi d \phi-\int_{0}^{\pi / 3} \sin \phi \cos ^{3} \phi d \phi\right) \\
= & 2 \pi\left(-\left.8 \cos \phi\right|_{0} ^{\pi / 3}+\int_{1}^{1 / 2} u^{3} d u\right) \\
= & 2 \pi\left(-8\left(\frac{1}{2}-1\right)+\frac{1}{4}\left(\frac{1}{16}-1\right)\right) \\
= & 2 \pi\left(4-\frac{15}{64}\right)
\end{aligned}
$$

Finding the limits of integration in spherical coordinates.

If $f(\rho, \phi, \theta)$ is continuous over a region $D \in \mathbb{R}^{3}$ then

$$
\begin{aligned}
\iiint_{D} f d V=\iiint_{D} f(\rho, \phi, \theta) \rho^{2} & \sin \phi d \rho d \phi d \theta \\
& =\int_{\theta=\alpha}^{\theta=\beta} \int_{\phi=\phi_{\min }}^{\phi=\phi_{\max }} \int_{\rho=g_{1}(\phi, \theta)}^{\rho=g_{2}(\phi, \theta)} f(\rho, \phi, \theta) d \rho d \phi d \theta
\end{aligned}
$$

Example 4. Volume of a Cardioid of Revolution

Let D be the cardioid of revolution $\rho=1-\cos \phi$. Find the volume of D.

$$
\begin{aligned}
V & =\iiint_{D} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi} \int_{\phi=0}^{\phi=\pi} \int_{\rho=0}^{\rho=1-\cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =2 \pi \int_{\phi=0}^{\phi=\pi} \int_{\rho=0}^{\rho=1-\cos \phi} \rho^{2} \sin \phi d \rho d \phi \\
& =\left.\frac{2 \pi}{3} \int_{\phi=0}^{\phi=\pi} \rho^{3} \sin \phi\right|_{\rho=0} ^{\rho=1-\cos \phi} d \phi \\
& =\frac{2 \pi}{3} \int_{\phi=0}^{\phi=\pi} \sin \phi(1-\cos \phi)^{3} d \phi \\
& =\frac{2 \pi}{3} \int_{u=0}^{u=2} u^{3} d u \\
& =\left(\frac{2 \pi}{12}\right)(16-0) \\
& =\frac{8 \pi}{3}
\end{aligned}
$$

Although it is tedious, it is possible to confirm the previous result using methods from Calculus II.

Example 5. Find the volume of the solid generated by rotation $r=1+\cos \theta, 0 \leq \theta \leq \pi$ about the x-axis.

It should be clear that this will generate a solid that has the same volume as the cardiod of revolution from Example 4. Now convert the polar equation to the equivalent rectangular equation.

$$
\begin{align*}
r & =1+\cos \theta \\
r^{2} & =r+r \cos \theta \\
x^{2}+y^{2} & =\sqrt{x^{2}+y^{2}}+x \tag{1}
\end{align*}
$$

Now if we "solve" for y as a function of x, for $y \geq 0$, we obtain 2 functions

$$
\begin{aligned}
& f(x)=\sqrt{-x^{2}+x+\frac{1}{2} \sqrt{4 x+1}+\frac{1}{2}} \text { and } \\
& g(x)=\frac{\sqrt{-2 x^{2}+2 x-\sqrt{4 x+1}+1}}{\sqrt{2}}
\end{aligned}
$$

We sketch the graph of $y=f(x)$ in blue and the graph of $y=g(x)$ in red. It is not difficult, with the help of the Implicit Function Theorem and (1), to determine that the vertical tangent line (shown as a dashed line in the above sketch) occurs at the point $(-1 / 4, \sqrt{3} / 4)$.

It follows that the volume of the cardiod of revolution is given by

$$
V=\underbrace{\pi \int_{-1 / 4}^{0}\left((f(x))^{2}-(g(x))^{2}\right) d x}_{V_{1}}+\underbrace{\pi \int_{0}^{2}(f(x))^{2} d x}_{V_{2}}
$$

Now

$$
\begin{aligned}
V_{2} & =\pi \int_{0}^{2}(f(x))^{2} d x \\
& =\pi \int_{0}^{2}\left(\sqrt{-x^{2}+x+\frac{1}{2} \sqrt{4 x+1}+\frac{1}{2}}\right)^{2} d x \\
& =\pi \int_{0}^{2}\left(-x^{2}+x+\frac{1}{2} \sqrt{4 x+1}+\frac{1}{2}\right) d x \\
& =\left.\pi\left(\frac{-x^{3}}{3}+\frac{x^{2}}{2}+\frac{(4 x+1)^{3 / 2}}{12}+\frac{x}{2}\right)\right|_{0} ^{2} \\
& =\pi\left[\left(\frac{-2^{3}}{3}+\frac{2^{2}}{2}+\frac{(4(2)+1)^{3 / 2}}{12}+\frac{2}{2}\right)-\frac{1}{12}\right] \\
& =\frac{5 \pi}{2}
\end{aligned}
$$

It turns out that $V_{1}=\pi / 6$ (we omit the calculation). Thus

$$
V=V_{1}+V_{2}=\frac{5 \pi}{2}+\frac{\pi}{6}=\frac{8 \pi}{3}
$$

as we saw above.

Example 6.

Let D be the solid bounded below by the hemisphere $\rho=1, z \geq 0$, and above by the cardioid of revolution $\rho=1+\cos \phi$. Find the volume of D.

To summarize:

Cylindrical Coordinates: If $f(r, \theta, z)$ is continuous over a region $D \in \mathbb{R}^{3}$ then

$$
d V=d z r d r d \theta
$$

and

$$
\begin{aligned}
\iiint_{D} f d V & =\iiint_{D} f(r, \theta, z) d z r d r d \theta \\
& =\int_{\theta=\alpha}^{\theta=\beta} \int_{r=h_{1}(\theta)}^{r=h_{2}(\theta)} \int_{z=g_{1}(r, \theta)}^{z=g_{2}(r, \theta)} f(r, \theta, z) d z r d r d \theta
\end{aligned}
$$

Spherical Coordinates: If $f(\rho, \phi, \theta)$ is continuous over a region $D \in \mathbb{R}^{3}$ then

$$
d V=\rho^{2} \sin \phi d \rho d \phi d \theta
$$

and

$$
\begin{aligned}
\iiint_{D} f d V & =\iiint_{D} f(\rho, \phi, \theta) \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{\theta=\alpha}^{\theta=\beta} \int_{\phi=\phi_{\min }}^{\phi=\phi_{\max }} \int_{\rho=g_{1}(\phi, \theta)}^{\rho=g_{2}(\phi, \theta)} f(\rho, \phi, \theta) \rho^{2} \sin \phi d \rho d \phi d \theta
\end{aligned}
$$

Coordinate Conversion Formulas

Cylindrical to
Rectangular

$$
\begin{array}{ccc}
x=r \cos \theta & x=\rho \sin \phi \cos \theta & r=\rho \sin \phi \\
y=r \sin \theta & y=\rho \sin \phi \sin \theta & z=\rho \cos \phi \\
z=z & z=\rho \cos \phi & \theta=\theta
\end{array}
$$

