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15.3 Double Integrals over General Regions

Theorem 1. Fubini’s Theorem (Stronger Form)

If f (x, y) is continuous over a region R.

1. If R is defined by a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), then

¨

R

f (x, y) dA =

ˆ b

a

ˆ y=g2(x)

y=g1(x)

f (x, y) dy dx

2. If R is defined by c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y), then

¨

R

f (x, y) dA =

ˆ d

c

ˆ x=h2(y)

x=h1(y)

f (x, y) dx dy
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Example 1. Consider the double integral below and answer the

questions that follow.

ˆ 1

0

ˆ cos−1 x

0

esin y dy dx

π/2

1

(a) Sketch the region of integration.

(b) Write an equivalent double integral

with the order of integration reversed.

From the sketch. Notice that the red

arrows indicate the new direction for

the inside integral.

ˆ π/2

0

ˆ x=cos y

x=0

esin y dx dy

(c) Evaluate the double integral above.

Since the above integrals are equal, we will use the one from part

(b) (why?).

=

ˆ π/2

0

esin y cos y dy

= esin y
π/2

0

= e− 1
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Example 2. Let h be an integrable function over the region R defined

by

R : 0 ≤ y ≤ g(x), 0 ≤ x ≤ b

Here g(x) is increasing on (0, b). See the sketch below.

b

g(x)(1)

¨

R

h(x, y) dA =

ˆ b

0

ˆ g(x)

0

h(x, y) dy dx

Rewrite the iterated integral in (1) with the order of integration reversed.

Notice that g−1(y) is defined on the interval (0, g(b)). Thus

¨

R

h(x, y) dA =

ˆ g(b)

0

ˆ b

g−1(y)

h(x, y) dx dy

Exercise - Continuing with the above example, suppose that h is an

integrable function defined over the region

S : g(x) ≤ y ≤ g(b), 0 ≤ x ≤ b. Rewrite the iterated integral below with

the order of integration reversed.

¨

S

h(x, y) dA =

ˆ b

0

ˆ g(b)

g(x)

h(x, y) dy dx
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Example 3. Let h be an integrable function over the region R where

R : f (x) ≤ y ≤ g(x), a ≤ x ≤ b

Here f (x) is decreasing on (a, b) and g(x) is increasing on (a, b). See

the sketch below. Now

a b

c

d

e

f(x)

g(x)(2)

¨

R

h(x, y) dA =

ˆ b

a

ˆ g(x)

f(x)

h(x, y) dy dx

Rewrite the iterated integral with the order of integration reversed (as

unrealistic as that might be in this case).

Let c = f (b), d = f (a) = g(a), and e = g(b) (see the sketch). Notice that

f−1(y) is defined on the interval (c, d) and g−1(y) is defined on the

interval (d, e). Now let I denote the integral in (2). Then I = I1 + I2
where

I1 =

ˆ d

c

ˆ b

f−1(y)

h(x, y) dx dy

and

I2 =

ˆ e

d

ˆ b

g−1(y)

h(x, y) dx dy
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Example 4. Confirm each of the calculations below by evaluating each

integral in two different ways.

a.

ˆ 4

0

ˆ

√
x

0

2x2y dy dx = 64

b.

ˆ 4

1

ˆ x2

1/x

8xy dy dx = 2730− 4 ln 4

1 4

0.25
1

−2

16

1/x

x2

not to scale

The region of integration is shown in the

figure to the right.



15.3 6

Area of Bounded Regions in the Plane

Let f (x) be a nonnegative function defined on the interval [a, b]. In a

first semester calculus course we found the “area under a curve

y = f (x) between a and b” was given by

Area =

ˆ b

a

f (x) dx

The following definition extends this notion.

Definition. Area

The area of a closed, bounded region R in the plane is

A =

¨

R

dA
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Example 5. Finding the area of a planar region.

Find the area of the region R bounded by the curves

y = (x− 3)2/4 + 1 and y = 2x. (See sketch.)

5 10

5

10

15

20

25

Area =

¨

R

dA

=

ˆ 13

1

ˆ 2x

(x−3)2/4+1

dy dx
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Average Value of a Function

As we did in Calculus I, we have the following definition.

Definition. Let f be an integrable function defined over a region R in

the plane. Then the average value of f over R is given by

favg =
1

area of R

¨

R

f dA

Example 6. Finding the average value of a function.

Let f (x, y) = 2x. Find the average value of f over the region R from the

example above. We have

favg =
1

72

¨

R

f dA

=
1

72

ˆ 13

1

ˆ 2x

(x−3)2/4+1

2x dy dx
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Mass and moment formulas for thin plates covering regions in the

xy-plane.

Density: δ(x, y) (mass per unit area)

Mass: M =

¨

δ(x, y) dA

First Moments: Mx =

¨

y δ(x, y) dA and My =

¨

x δ(x, y) dA

Center of Mass: x =
My

M
, y =

Mx

M
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Example 7. Finding the center of mass.

Let R be the region (see sketch) defined by 0 ≤ x ≤ 2, x2 ≤ y ≤
x

2
+ 3

with a density function δ(x, y) = 1. Find the center of mass.

1 2 3 4 5

1

2

3

4

5



15.3 11

M =

¨

R

δ(x, y) dA

=

ˆ 2

0

ˆ x/2+3

x2
dy dx

=

ˆ 2

0

(x

2
+ 3− x2

)

dx

=
13

3

Mx =

¨

R

y δ(x, y) dA

=

ˆ 2

0

ˆ x/2+3

x2
y dy dx

=
1

2

ˆ 2

0






y2

x/2+3

x2






dx

=
1

8

ˆ 2

0

(

−4x4 + x2 + 12x + 36
)

dx

=
137

15
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My =

¨

R

x δ(x, y) dA

=

ˆ 2

0

ˆ x/2+3

x2
x dy dx

=

ˆ 2

0






xy

y=x/2+3

y=x2






dx

=
1

2

ˆ 2

0

(x2 + 6x− 2x3) dx

=
10

3

y =
Mx

M
=

137

65

x =
My

M
=

10

13
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It follows that the center of mass is

(

10

13
,
137

65

)

as indicated below.

1 2 3 4 5

1

2

3

4

5

b

In the example above the density function was constant. In these cases

the mass is said to be “uniformly distributed” or homogeneous.


