15.2 Iterated Integrals and Fubini's Theorem

Theorem 1. Fubini's Theorem

If $f(x, y)$ is continuous over the rectangular region
$R: a \leq x \leq b, c \leq y \leq d$, then

$$
\begin{equation*}
\iint_{R} f(x, y) d A=\int_{a}^{b} \underbrace{\left(\int_{c}^{d} f(x, y) d y\right)}_{\text {a function of } x} d x \tag{1}
\end{equation*}
$$

(2)

$$
=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

or

$$
\begin{align*}
\iint_{R} f(x, y) d A & =\int_{c}^{d} \underbrace{\left(\int_{a}^{b} f(x, y) d x\right)}_{\text {a function of } y} d y \tag{3}\\
& =\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
\end{align*}
$$

Remark. The expressions on the right are called iterated integrals. So Fubini's Theorem allows us to rewrite a double integral into a form that is more manageable as we see in the examples below. Notice that parenthesis surrounding the "inner integral" are normally not needed.

Motivation for Fubini's Theorem. Let's revisit a topic from last time.
Find the volume below the surface $z=f(x, y)$ over the region
$R: 0 \leq x \leq b, 0 \leq y \leq d$.

For a fixed x_{0}, find the cross-sectional area shown.
So must consider the function $g(y)=f\left(x_{0}, y\right)$. It follows that the area of the cross section is

$$
\begin{aligned}
A\left(x_{0}\right) & =\int_{y=0}^{y=d} g(y) d y \\
& =\int_{y=0}^{y=d} f\left(x_{0}, y\right) d y
\end{aligned}
$$

It follows from calculus II that the volume of the region below the
surface is

$$
\begin{aligned}
\text { Volume } & =\int_{x=0}^{x=b} A(x) d x \\
& =\int_{x=0}^{x=b} \int_{y=0}^{y=d} f(x, y) d y d x
\end{aligned}
$$

A similar argument would show that the volume is also given by

$$
\begin{aligned}
\text { Volume } & =\int_{y=0}^{y=d} A(y) d y \\
& =\int_{y=0}^{y=d} \int_{x=o}^{x=b} f(x, y) d x d y
\end{aligned}
$$

Example 1. Evaluating Double Integrals

a. Let R : $0 \leq x \leq 3,-2 \leq y \leq 0$. Sketch the region R and evaluate the double integral below.

$$
\iint_{R}\left(5 x^{2} y-6 x y\right) d A
$$

b. Evaluate the double integral.

$$
\int_{0}^{\pi / 6} \int_{0}^{1} 3 x \sin 2 x y d x d y
$$

Theorem 2. Fubini's Theorem (Stronger Form)

If $f(x, y)$ is continuous over a region R.

1. If R is defined by $a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{y=g_{1}(x)}^{y=g_{2}(x)} f(x, y) d y d x
$$

2. If R is defined by $c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)$, then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{x=h_{1}(y)}^{x=h_{2}(y)} f(x, y) d x d y
$$

Example 2. Evaluating Double Integrals

Evaluate the following integrals.
a. $\int_{0}^{1} \int_{0}^{\sqrt{1-s^{2}}} 8 t d t d s$
b. $\int_{0}^{1} \int_{1-x}^{1-x^{2}} d y d x$
c. $\int_{0}^{\ln 2} \int_{e^{y}}^{2} d x d y$
d. $\int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{y^{3}} d y d x$

Example 3. Sketch the region of integration and evaluate the integral below.

$$
\begin{equation*}
\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y d x=I \tag{5}
\end{equation*}
$$

As written, the integral in (5) seems impossible to evaluate. So we try to change the order of integration. Notice that the region R can also be described by

$$
0 \leq x \leq \sqrt{4-y}, \quad 0 \leq y \leq 4
$$

It follows that the iterated integral in (5) can be rewritten as

$$
\begin{align*}
I & =\int_{0}^{4} \int_{0}^{\sqrt{4-y}} \frac{x e^{2 y}}{4-y} d x d y \tag{6}\\
& =\int_{0}^{4} \frac{e^{2 y}}{4-y} \int_{0}^{\sqrt{4-y}} x d x d y \\
& =\frac{1}{2} \int_{0}^{4} \frac{e^{2 y}}{4-y}\left(\left.x^{2}\right|_{0} ^{\sqrt{4-y}}\right) d y \\
& =\frac{1}{2} \int_{0}^{4} \frac{e^{2 y}}{4-y} \frac{4-y}{1} d y=\frac{1}{2} \int_{0}^{4} e^{2 y} d y \\
& =\frac{e^{8}-1}{4}
\end{align*}
$$

Notice that Wolfram Alpha can correctly evaluate the integral in (5) and the equivalent integral in (6).

Example 4. Finding the volume below the surface $z=f(x, y)$.
Let $f(x, y)=x^{2}+3 y$ be defined over the region
$R: 0 \leq x \leq 3$ and $0 \leq y \leq 2 x$. Find the volume beneath the surface $z=f(x, y)$.

We try two methods.

Method 1: Integrate first with respect to y.
So the volume is given by the double integral:

$$
\begin{aligned}
\text { Volume } & =\iint_{R} f(x, y) d A \\
& =\int_{0}^{3} \int_{0}^{2 x}\left(x^{2}+3 y\right) d y d x \\
& =\left.\int_{0}^{3}\left(x^{2} y+\frac{3 y^{2}}{2}\right)\right|_{y=0} ^{y=2 x} d x \\
& =\int_{0}^{3}\left(2 x^{3}+6 x^{2}\right) d x \\
& =\cdots \\
& =\frac{189}{2}
\end{aligned}
$$

Method 2: Integrate with respect to x.

$$
\begin{aligned}
\text { Volume } & =\iint_{R} f(x, y) d A \\
& =\int_{0}^{6} \int_{y / 2}^{3}\left(x^{2}+3 y\right) d x d y \\
& =\left.\int_{0}^{6}\left(\frac{x^{3}}{3}+3 x y\right)\right|_{x=y / 2} ^{x=3} d y \\
& =\int_{0}^{6}\left(-\frac{y^{3}}{24}-\frac{3 y^{2}}{2}+9 y+9\right) d y \\
& =\cdots \\
& =\frac{189}{2}
\end{aligned}
$$

Example 5. Finding the area of a planar region.

Find the area of the region R bounded by the curves $y=(x-3)^{2} / 4+1$ and $y=2 x$.

$$
\begin{aligned}
\text { Area } & =\iint_{R} d A \\
& =\int_{1}^{13} \int_{(x-3)^{2} / 4+1}^{2 x} d y d x \\
& =\vdots \\
& =72
\end{aligned}
$$

Average Value of a Function

As we did in Calculus I, we have the following definition.
Definition. Let f be an integrable function defined over a region R in the plane. Then the average value of f over R is given by

$$
f_{\mathrm{avg}}=\frac{1}{\text { area of } R} \iint_{R} f d A
$$

Example 6. Finding the average value of a function.
Let $f(x, y)=2 x$. Find the average value of f over the region R from the previous example. We have

$$
\begin{aligned}
f_{\text {avg }} & =\frac{1}{\text { area of } R} \iint_{R} f d A \\
& =\frac{1}{72} \int_{1}^{13} \int_{(x-3)^{2} / 4+1}^{2 x} 2 x d y d x
\end{aligned}
$$

