16.6 Introduction to Parametric Surfaces

Parametric Surfaces

In this section we study the vector valued function $\mathbf{r}(u, v)$ of two parameters u and v. So let

$$
\begin{equation*}
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k} \tag{1}
\end{equation*}
$$

defined on a region D of the so-called $u v$-plane.

The set of points $(x, y, z) \in \mathbb{R}^{3}$ with

$$
\begin{equation*}
x=x(u, v), \quad y=y(u, v), \quad z=z(u, v), \quad(u, v) \in D \tag{2}
\end{equation*}
$$

is called a parametric surface S and the equations (2) are called the parametric equations of S.

Example 1. Identify and sketch the surface whose vector equation is

$$
\mathbf{r}(u, v)=\cos u \mathbf{i}+v \mathbf{j}+\frac{3 \sin u}{4} \mathbf{k}
$$

The corresponding parametric equations are

$$
x=\cos u, \quad y=v, \quad z=\frac{3 \sin u}{4}
$$

Notice that

$$
9 x^{2}+16 z^{2}=9 \cos ^{2} u+9 \sin ^{2} u=9
$$

So that cross-sections parallel to the $x z$-plane are ellipses. Since $y=v$ without restriction, we obtain an elliptical cylinder parallel to the y-axis.

Suppose now that we fix $u=u_{0}$. Then $\mathbf{r}_{1}(v)=\mathbf{r}\left(u_{0}, v\right)$ is a vector-valued function of a single parameter v. Similarly, $\mathbf{r}_{2}(u)=\mathbf{r}\left(u, v_{0}\right)$ is a vector-valued function of the single parameter u. In each case, we generate families of space curves that lie on the surface S. A few of these surface curves are shown on the surface below (from the previous example).

It turns out to be very straightforward to find the parametric representation for a given surface of the form $z=f(x, y)$.
Example 2. Find the parametric representation of the paraboloid $z=x^{2}+y^{2}+1$.

We give two representations.
The Easy One: Here we let $x=x$ and $y=y$. Then $z=x^{2}+y^{2}+1$ so that

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+\left(x^{2}+y^{2}+1\right) \mathbf{k}
$$

The More Useful Representation (perhaps): For this one we work with the polar parameters r and θ. So let $x=r \cos \theta$ and $y=r \sin \theta$. It follows that $z=r^{2}+1$ so that

$$
\mathbf{r}(r, \theta)=r \cos \theta \mathbf{i}+r \sin \theta \mathbf{j}+\left(r^{2}+1\right) \mathbf{k}
$$

Example 3. Can you describe the surface defined by the vector equation

$$
\mathbf{r}(\phi, \theta)=a \sin \phi \cos \theta \mathbf{i}+a \sin \phi \sin \theta \mathbf{j}+a \cos \phi \mathbf{k}
$$

for some $a>0$? Here $0 \leq \phi \leq \pi$ and $0 \leq \theta \leq 2 \pi$.

Parametric Surfaces and Tangent Planes

Example 4. Find the equation of the tangent plane for the surface defined by the vector equation at $P_{0}=P_{0}(-6,1,8)$.

$$
S: \mathbf{r}(s, t)=\left\langle 2 s^{2}-t^{3}, s, 4 t\right\rangle
$$

Notice that the $\mathbf{r}(1,2)=P_{0}$. Now what can we say about the parametric curves $\mathbf{r}_{a}(s)=\mathbf{r}(s, 2)$ and $\mathbf{r}_{b}(t)=\mathbf{r}(1, t)$?

Clearly, both curves lie on S and they intersect at P_{0}. Also, $\mathbf{r}_{a}^{\prime}(1)$ is tangent to S at P_{0} and $\mathbf{r}_{b}^{\prime}(2)$ is tangent to S at P_{0}. It follows that $\mathbf{r}_{a}^{\prime}(1) \times \mathbf{r}_{b}^{\prime}(2)$ is orthogonal to the surface S at P_{0}. But

$$
\begin{aligned}
\mathbf{r}_{a}^{\prime}(1) & =\mathbf{r}_{x}(1,2)
\end{aligned}=\langle 4,1,0\rangle, \begin{aligned}
\mathbf{r}_{b}^{\prime}(2) & =\mathbf{r}_{y}(1,2)
\end{aligned}=\langle-12,0,4\rangle .
$$

In particular,

$$
\mathbf{r}_{x}(1,2) \times \mathbf{r}_{y}(1,2)=\langle 4,-16,12\rangle
$$

It follows that the equation of the tangent plane at P_{0} is given by

$$
4(x+6)-16(y-1)+12(z-8)=0
$$

Or, after dividing through by 4 and rearranging, we obtain

$$
x-4 y+3 z=14
$$

Is there any way that we can confirm this result independently?

Example 5. Redo the previous example by recognizing S as the level surface of some function (of three variables).

Notice that

$$
x=2 s^{2}-\left(\frac{4 t}{4}\right)^{3}=2 y^{2}-\frac{z^{3}}{64}
$$

It follows that S is the level surface $f(x, y, z)=0$ of the function $f(x, y, z)=2 y^{2}-z^{3} / 64-x$. Following the recipe from section 14.4 we have

$$
\begin{aligned}
& f_{x}=-1 \\
& f_{y}=4 y \quad \Longrightarrow \quad f_{y}\left(P_{0}\right)=4 \\
& f_{z}=-3 z^{2} / 64 \quad \Longrightarrow \quad f_{z}\left(P_{0}\right)=-3
\end{aligned}
$$

and $\langle-1,4,-3\rangle$ is normal to the tangent plane $x-4 y+3 z=14$, as expected.

Example 6. Let S be a sphere of radius 4 centered at the origin.

Find the equation of the plane tangent S to a at $Q_{0}(3, \sqrt{3}, 2)$. In
Example 3 we saw that S can be defined by the vector equation

$$
S: \mathbf{r}(\phi, \theta)=4 \sin \phi \cos \theta \mathbf{i}+4 \sin \phi \sin \theta \mathbf{j}+4 \cos \phi \mathbf{k}
$$

It is routine to show that $\mathbf{r}(\pi / 3, \pi / 6)=Q_{0}$. Now

$$
\begin{aligned}
\mathbf{r}_{\phi} & =\langle 4 \cos \phi \cos \theta, 4 \cos \phi \sin \theta,-4 \sin \phi\rangle \\
\Longrightarrow \mathbf{r}_{\phi}(\pi / 3, \pi / 6) & =\langle\sqrt{3}, 1,-2 \sqrt{3}\rangle \\
\mathbf{r}_{\theta} & =\langle-4 \sin \phi \sin \theta, 4 \sin \phi \cos \theta, 0\rangle \\
\Longrightarrow \mathbf{r}_{\theta}(\pi / 3, \pi / 6) & =\langle-\sqrt{3}, 3,0\rangle
\end{aligned}
$$

An easy calculation shows that

$$
\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}=\langle 6 \sqrt{3}, 6,4 \sqrt{3}\rangle
$$

It follows that the equation of the tangent plane at Q_{0} is given by

$$
6 \sqrt{3}(x-3)+6(y-\sqrt{3})+4 \sqrt{3}(z-2)=0
$$

Why is the last example easy to check independently?

