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16.2 Line Integrals*

Let f(z,y, z) be defined on a region D € R? containing the smooth
curve C where C' is parameterized by

Cor(t) =zt)i+yt)j+z2(t)k, a<t<b

Recall that C'is called a smooth curve if ¢’ is continuous and r'(¢) # 0.

* - Some authors also refer to these as “contour integrals”.
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Now partition C' into a finite number of subarcs (as we have done
before) of length As; and form the (Riemann) sum

3

Sn= > [Tk Yk, 21) Asp,
—1

where (z, v, zx) is in the kth subarc. Now if f is continuous and the
functions x, y, and z have continuous first derivatives, the above sum
has a limit as As; approach 0. We call this limit the (line) integral of f
over C from a to b and denote it by

(1) /Cf(x,y,z) ds
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Now what? If r(¢) is smooth for a <t < b then

0= [ Wl

Now r/(¢) is continuous, so by the FTC ds = |r/()| dt and we have the
following:

To integrate a continuous function f(z,y, z) over a curve C"

1. Find a smooth parametrization of C,
r(t)=x(t)i+yt)j+z(t)k

2. We can now evaluate the integral as

b
@) /C f(,y,2)ds = / F ((t), y(t), (1)) |r'(2)] dt

2
Remark. Stewart initially writes \/(‘é—f)z + (Z—i’) + (%)2 dt instead of

r'(¢)| dt. Thus (2) is initially written as

/C Fla,y,2) ds = / el (0).2(0) \/ (Cé—t) ¥ (%) " (%)zdt

Fortunately, he introduces the equivalent form (2) on page 1092.
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Example 1. Computing a Line Integral

Evaluate the line integral

/f(w,y,Z) ds
C

where f(z,y,2z) =2y +y° — zand C'is

(a) C' is the line segment from the origin to (1,2, 1).
<

P(1,2,1)
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Letr(t) =ti+2tj+tk, 0<t<1.Then
f=2t"+8t°—t

Notice that r(¢) is smooth and

Yt = /()7 + @7+ (1) = V&
Thus

/ fl,y,2z)ds = V6 /1(2752 +8t% —t) dt
C 0
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(b) C'is the curve shown in the sketch.

P(1,2,1)

We break up the curve as C = C, U ()
where

Cr: ri(t)=2tj, 0<t<1, = |rj(t)]=2

Co: ro(t)=ti+2j+tk, 0<t<1; = [th(t) =2
Thus

1 1
/ f(:c,y,z)ds:Q/(O+8t3—0)dt+\/§/ (2t+8—1t) dt
ClUCy 0 0
(D

Notice that this result differs from the previous one even though we
start and end at the same points. More about this later.
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Line Integrals of Vector Fields

Suppose the vector field
F=Mzy,z2)i+ Ny z2)j+ Plryz2)k

represents a continuous force field throughout a region in space
containing a space curve C' that has a smooth parameterization

rit)=z(t)i+yt)j+z20)k, a<t<b

We wish to compute the work done by this force in moving a particle
along C.

Definition. The work done by the force F over the smooth curve C
is given by

(3) W—/CF-Tds

where T is the unit tangent vector.

Once we choose a (smooth) parameterization, (3) is usually written as

t=b
/F-TdS:/ F-Tds
C t=a
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Remark. Since T = dr/ds we may rewrite (3) as

t=b
/F-TdS:/ F-Tds
C t=a

t=b
_ / p. I
e ds

t=b
= / F - dr
t=a

In fact, we have several different ways to write the work integral:

t=b
/F-Tds—/ F.-Tds
C t=a
t=b
—/ F - dr
t=a
b
dr
= F.-—dt
[F5

b
dx dy dz
= M—+N-—+P— | dt
/( a T dt)

b
:/ Mdx+ Ndy+ Pdz

where dr = dri+ dyj+ dz k.
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As we discussed in class, F need not be a force field. See, for example,
the notes on flow and flux starting on page 18. We have the following.

Definition. Line Integral of F along C

Let F' be a continuous vector field defined on a smooth curve C' and
suppose that C' is parameterized by a vector function r(t), a <t <.
Then the line integral of F along C'is

(4) /CF-TdszfabF(r(t))-r’(t)dt:/ttbF.dr

=a
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Example 2. Evaluating a Work Integral

Let F = 22 i —y j and let C be the curve from A(4, 2) to B(1, —1) along
the parabola = = . See Figure 1 below.

We use the parametrization (see Example 3 below to see how to do
this quickly).

(5) C:r(t)=02-3t)i+(2-3t)j, 0<t<I1

a. Evaluate the line integral [, F - dr.

First notice that z = (2 — 3t)? and y = (2 — 3t) so that
F(t)={((2—3t)",—(2—3t))
Now by (5) we have
r _
dt
It follows that

/tlF-dr _ /1<(2_3t)4,—(2—3t)> (=6(2 — 31), —3) di
L 0

=0

(—6(2 — 3t), —3)

- /1 —6(2 — 3t)” + 3(2 — 3t) dt

= —21+3/2 = —39/2

* — The actual integration calculations have been suppressed since
they are ftrivial.
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b. Find the work done by the force field F' on a particle that moves
along the curve C' from A to B.

By definition this is
/t CF()-T(t) ds — / T AR

=0

:/F-dr
C

= —39/2
by part (a).

c. Evaluate the line integral [, 2 dz — y dy. Same as (a) (why?), so

/332 dr —ydy = —39/2
C
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Figure 1: The Force Field: F = (22, —y)
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Example 3. (Re)Parameterizing a Curve.

How to parameterize the curve y = f(x). Suppose that one wishes to
parameterize a given curve from P = (b, f(b)) to Q = (a, f(a)). One
choice is to set x = s and y = f(s). (Of course, we make the obvious
modifications for the curve = = g(y).) Now

(6) r=si+ f(s)j,

where s lies between a and . Now if b < a then we are done. On the
other hand, if a < b, the parameterization is from () to P which is not
what we want.
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Recall, that the expression
(7) s=bl—t)+at, 0<t<1

yields all real numbers from b to « starting with . To see this, consider
the sketch below.

N
a/,,

Notice that the slope of the line in the above sketch is (a — b) so that
s=b+(a—0b)t
=b(1 —1t)+at

as we claimed in (7).



16.2

So let s = b(1 —t) + a(t) in (6). It follows that the desired
parameterization is given by

r=>b1—-1t)+at
y=f(b(1l—t)+at), 0<t<1
or
(8) r=0b1—-t)+alt)i+ f(6(1—t)+at)j 0<t<I1

As an application, consider the curve x = y* from the previous
example. In this case the obvious parameterization yields

y=sc=g(s)=5", —-1<s5<2
but this traces the curve in the wrong direction. Instead, we apply (8)
with

b=2anda=—1.
Thus

y=2(1—t)+(-1)t=2—3t
r=(2-3t)2 0<t<l1

as we claimed above.

15
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Example 4. A Calculus Il Example

Let a < b. In second semester calculus we saw that the work done by a
variable force M (x) directed along the xz-axis from z = a to x = b was
given by the definite integral

9) W:/bM(az)dx

Show that (9) is a special case of (3).

Consider the vector field F(x,y) = M (z)i. Find the work done by the
force F from (a,0) to (b, 0) along the z-axis.
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Notice that we have the parametrization
r(t)=(a(l—¢t)+0bt)i, 0<t<1
of the line segment. It follows that

F(r(t)) = M(a(l —t)+bt)i
Now r'(t) = (b —a)iand |r'(t)] = b — a. Thus
W = /CF -Tds
= /0 F(r(t))-r'(t)dt

1
_ / M(a(l = )+ bt)(b — a) dt
0
Now let z = a(1 —t) + bt. Then dx = (b — a) dt and

W = /M 1—t +bt)(b—a)dt

dv
—/ M (x)dx

x(0)
b
:/ M (z) dx

as we saw in (9).



16.2 18

Flow Integrals and Circulation

If the vector field
F=M,y,2i+ N(z,y,2)j + P(z,y,2)k

represents the velocity field of a fluid flowing through a region in space
then the integral of F - T along a smooth curve in the region gives the
fluid’s flow along the curve. In that case, we have the following

Definition.
If C'is a smooth curve in the domain of a continuous velocity field
F=M(z,y,2)i + N(z,y,2)j + P(z,y,2)k,

then the flow along the curve fromt =atot=10b1is
(10) FIow:/F-Tds
C
where T is the unit tangent vector. This is called the flow integral. If

the curve is a closed loop, the flow is called the circulation around the
curve.
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Example 5. Flow Integral

Let F = —4zyi+ 8y j+ 2k be a velocity field. Find the flow along the
curve C:r(t) =ti+t*j+ k, 0 <t <2.

Observe that
dr = (i+ 2tj)dt
F(r(t)) = —4)(t*)i+8t%j + 2k

So by (10) we must evaluate

=2
/F-TdSI/ F - dr
C t=0

Here the right-hand side is one of the equivalent forms listed on
page 8. Continuing we have

t=2 2
/ F-dr:/ (—4°1+ 87 j+2k) - (i+2tj)dt
t=0 0
2
= / (—4t” + 16¢%) dt
0

2
:12/ 3 dt = 48
0
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Example 6. Circulation

Let F = yi+ 2zy j be a velocity field. Find the counter-clockwise
circulation around the upper half of the unit circle. So let

Cy:ri(t) =costi+sintj, 0<t<nm
Corot) =ti, —1<t<1
It follows that
dr; = (—sinti—+ costj)dt
F(ri(t)) =sinti+ 2costsintj
Also,

dro = idt and F(ry(t)) =0

20
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|t follows that the circulation is given by

/ F°TdS=/F'Td8+/F'Td8
C1UCy Ch Co

T
= / (2 cos’ tsint — sin? t) dt
0

T s
2 / cos>tsint dt — / sin® ¢ dt
0 0

—1 1 T
_—2/ u2du——/ (1 —cos2t)dt
1 2 Jo

Remark. In section 16.4 we will discover another way to evaluate the
above integral.

21
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Example 7. Evaluate the integral below around the closed curves that
follow.

Il -y x
11 d d
1) /(,~x2+<y—1>2 Ty —pY

(a) C is the rectangle with corners (2,3), (2, —3), (-2, —3),(—2,3) and
the curve is traversed clockwise (once) when viewed from above.

So let
1 —y ) x

F = 1+
A+ (y—17 2+ (y—1)

7]

be a velocity field. Then the integral in (11) can be viewed as the
(clockwise) circulation integral ¢ F - dr.

In class we showed that

—>

™

Y

/ F.dr=—tan '2—tan ‘1
Ch

Similar calculations show that

/ F.-dr=—tan '2—tan '1
C3

and

/ F.dr=—2tan 1 c;
Cy

7
Not to scale

We evaluate |, F - dr, below.
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Notice that C; can be parameterized by the vector equation
ro(t) = (2—4t)i—3j, 0 <t < 1. It follows that dr, = —4idt, and
1 . 2 — 4t
1+
(1—=2t)2+4  (1—2t)>+4

F(ry(t)) = J

so that

1
4
F.dr,— dt
/02 h2 /0(1—2t)2+4
_ d
/1 u? +4 b

1/1 1 .
== u
2 /1 (u/2)?2+1

—1

— tan ' (u/2)

= —2tan '(1/2)

Now let I denote the integral in (11). Putting this all together yields

I:§£F-dr

C

:/F-dr1+/F-dr2+/F-dr3+/F-dr4
C1 Co C3 Cy

= —2(tan"" 2+ tan~" 1 4 tan~'(1/2) + tan"" 1)

= =27
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(b) C'is the circle of radius 1 centered at (0, 1) traversed clockwise.

|

|

|

¥
Now C' can be parameterized by the vector equation
r(t) =cost i+ (1 —sint) j, 0 <t <27 and

F(r(t)) =sint i+ cost j
and
dr = —(sint i+ cost j)dt

so that

2T
/F-dr:/ —(sin*¢ + cos® t) dt
C 0

= 27

We will have more to say about this example in section 16.4.

24



