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16.2 Line Integrals*

x

y

z

Let f (x, y, z) be defined on a region D ∈ R
3 containing the smooth

curve C where C is parameterized by

C : r(t) = x(t) i + y(t) j + z(t)k, a ≤ t ≤ b

Recall that C is called a smooth curve if r′ is continuous and r′(t) 6= 0.

* - Some authors also refer to these as “contour integrals”.
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Now partition C into a finite number of subarcs (as we have done

before) of length ∆sk and form the (Riemann) sum

Sn =
n∑

k=1

f (xk, yk, zk)∆sk,

where (xk, yk, zk) is in the kth subarc. Now if f is continuous and the

functions x, y, and z have continuous first derivatives, the above sum

has a limit as ∆sk approach 0. We call this limit the (line) integral of f

over C from a to b and denote it by
ˆ

C

f (x, y, z) ds(1)
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Now what? If r(t) is smooth for a ≤ t ≤ b then

s(t) =

ˆ t

a

|r′(τ )| dτ

Now r′(t) is continuous, so by the FTC ds = |r′(t)| dt and we have the

following:

To integrate a continuous function f (x, y, z) over a curve C:

1. Find a smooth parametrization of C,

r(t) = x(t) i + y(t) j + z(t)k

2. We can now evaluate the integral as

(2)

ˆ

C

f (x, y, z) ds =

ˆ b

a

f (x(t), y(t), z(t)) |r′(t)| dt

Remark. Stewart initially writes

√
(
dx
dt

)2
+
(
dy
dt

)2

+
(
dz
dt

)2
dt instead of

|r′(t)| dt. Thus (2) is initially written as

ˆ

C

f (x, y, z) ds =

ˆ b

a

f (x(t), y(t), z(t))

√
(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

Fortunately, he introduces the equivalent form (2) on page 1092.
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Example 1. Computing a Line Integral

Evaluate the line integral
ˆ

C

f (x, y, z) ds

where f (x, y, z) = xy + y3 − z and C is

(a) C is the line segment from the origin to (1, 2, 1).

x
y

z

b

P (1, 2, 1)
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Let r(t) = t i + 2t j + tk, 0 ≤ t ≤ 1. Then

f = 2t2 + 8t3 − t

Notice that r(t) is smooth and

|r′(t)| =
√

(1)2 + (2)2 + (1)2 =
√
6

Thus
ˆ

C

f (x, y, z) ds =
√
6

ˆ 1

0

(2t2 + 8t3 − t) dt

=
√
6

(
2t3

3
+

8t4

4
− t2

2

) 1

0

=
√
6

(
13

6

)
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(b) C is the curve shown in the sketch.

x
y

z

b
P (1, 2, 1)

We break up the curve as C = C1 ∪ C2

where

C1 : r1(t) = 2t j, 0 ≤ t ≤ 1; =⇒ |r′1(t)| = 2

C2 : r2(t) = t i + 2 j + tk, 0 ≤ t ≤ 1; =⇒ |r′2(t)| =
√
2

Thus
ˆ

C1∪C2

f (x, y, z) ds = 2

ˆ 1

0

(0 + 8t3 − 0) dt +
√
2

ˆ 1

0

(2t + 8− t) dt

= 4 +
√
2

(
17

2

)

Notice that this result differs from the previous one even though we

start and end at the same points. More about this later.
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Line Integrals of Vector Fields

Suppose the vector field

F = M(x, y, z) i + N(x, y, z) j + P (x, y, z)k

represents a continuous force field throughout a region in space

containing a space curve C that has a smooth parameterization

r(t) = x(t) i + y(t) j + z(t)k, a ≤ t ≤ b

We wish to compute the work done by this force in moving a particle

along C.

Definition. The work done by the force F over the smooth curve C

is given by

(3) W =

ˆ

C

F ·T ds

where T is the unit tangent vector.

Once we choose a (smooth) parameterization, (3) is usually written as
ˆ

C

F ·T ds =

ˆ t=b

t=a

F ·T ds
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Remark. Since T = dr/ds we may rewrite (3) as

ˆ

C

F ·T ds =

ˆ t=b

t=a

F ·T ds

=

ˆ t=b

t=a

F · dr
ds

ds

=

ˆ t=b

t=a

F · dr

where dr = dx i + dy j + dz k.

In fact, we have several different ways to write the work integral:
ˆ

C

F ·T ds =

ˆ t=b

t=a

F ·T ds

=

ˆ t=b

t=a

F · dr

=

ˆ b

a

F · dr
dt

dt

=

ˆ b

a

(

M
dx

dt
+N

dy

dt
+ P

dz

dt

)

dt

=

ˆ b

a

M dx +N dy + P dz



16.2 9

As we discussed in class, F need not be a force field. See, for example,

the notes on flow and flux starting on page 18. We have the following.

Definition. Line Integral of F along C

Let F be a continuous vector field defined on a smooth curve C and

suppose that C is parameterized by a vector function r(t), a ≤ t ≤ b.

Then the line integral of F along C is

(4)

ˆ

C

F ·T ds =

ˆ b

a

F(r(t)) · r′(t) dt =
ˆ t=b

t=a

F · dr
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Example 2. Evaluating a Work Integral

Let F = x2 i− y j and let C be the curve from A(4, 2) to B(1, −1) along

the parabola x = y2. See Figure 1 below.

We use the parametrization (see Example 3 below to see how to do

this quickly).

(5) C : r(t) = (2− 3t)2 i + (2− 3t) j, 0 ≤ t ≤ 1

a. Evaluate the line integral
´

C F · dr.

First notice that x = (2− 3t)2 and y = (2− 3t) so that

F(t) =
〈
(2− 3t)4,−(2− 3t)

〉

Now by (5) we have

dr

dt
= 〈−6(2− 3t),−3〉

It follows that
ˆ t=1

t=0

F · dr =
ˆ 1

0

〈
(2− 3t)4,−(2− 3t)

〉
· 〈−6(2− 3t),−3〉 dt

=

ˆ 1

0

−6(2− 3t)5 + 3(2− 3t) dt

=* ...

= −21 + 3/2 = −39/2

* – The actual integration calculations have been suppressed since

they are trivial.
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b. Find the work done by the force field F on a particle that moves

along the curve C from A to B.

By definition this is
ˆ t=1

t=0

F(t) ·T(t) ds =

ˆ t=1

t=0

F(t) · r′(t)

|r′(t)| |r
′(t)| dt

=

ˆ t=1

t=0

F(t) · r′(t) dt

=

ˆ

C

F · dr

= −39/2

by part (a).

c. Evaluate the line integral
´

C x2 dx− y dy. Same as (a) (why?), so
ˆ

C

x2 dx− y dy = −39/2
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Figure 1: The Force Field: F = 〈x2,−y〉
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Example 3. (Re)Parameterizing a Curve.

How to parameterize the curve y = f (x). Suppose that one wishes to

parameterize a given curve from P = (b, f (b)) to Q = (a, f (a)). One

choice is to set x = s and y = f (s). (Of course, we make the obvious

modifications for the curve x = g(y).) Now

(6) r = s i + f (s) j,

where s lies between a and b. Now if b < a then we are done. On the

other hand, if a < b, the parameterization is from Q to P which is not

what we want.
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Recall, that the expression

(7) s = b(1− t) + at, 0 ≤ t ≤ 1

yields all real numbers from b to a starting with b. To see this, consider

the sketch below.

1
a

b

t

s

Notice that the slope of the line in the above sketch is (a− b) so that

s = b + (a− b)t

= b(1− t) + at

as we claimed in (7).
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So let s = b(1− t) + a(t) in (6). It follows that the desired

parameterization is given by

x = b(1− t) + at

y = f (b(1− t) + at), 0 ≤ t ≤ 1

or

(8) r = (b(1− t) + a(t)) i + f (b(1− t) + a(t)) j, 0 ≤ t ≤ 1

As an application, consider the curve x = y2 from the previous

example. In this case the obvious parameterization yields

y = s, x = g(s) = s2, −1 ≤ s ≤ 2

but this traces the curve in the wrong direction. Instead, we apply (8)

with

b = 2 and a = −1.

Thus

y = 2(1− t) + (−1)t = 2− 3t

x = (2− 3t)2, 0 ≤ t ≤ 1

as we claimed above.
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Example 4. A Calculus II Example

Let a < b. In second semester calculus we saw that the work done by a

variable force M(x) directed along the x-axis from x = a to x = b was

given by the definite integral

(9) W =

ˆ b

a

M(x) dx

Show that (9) is a special case of (3).

Consider the vector field F(x, y) = M(x) i. Find the work done by the

force F from (a, 0) to (b, 0) along the x-axis.
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Notice that we have the parametrization

r(t) = (a(1− t) + bt) i, 0 ≤ t ≤ 1

of the line segment. It follows that

F(r(t)) = M(a(1− t) + bt) i

Now r′(t) = (b− a) i and |r′(t)| = b− a. Thus

W =

ˆ

C

F ·T ds

=

ˆ 1

0

F(r(t)) · r′(t) dt

=

ˆ 1

0

M(a(1− t) + bt)(b− a) dt

Now let x = a(1− t) + bt. Then dx = (b− a) dt and

W =

ˆ 1

0

M(a(1− t) + bt
︸ ︷︷ ︸

x

) (b− a) dt
︸ ︷︷ ︸

dx

=

ˆ x(1)

x(0)

M(x) dx

=

ˆ b

a

M(x) dx

as we saw in (9).
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Flow Integrals and Circulation

If the vector field

F = M(x, y, z) i + N(x, y, z) j + P (x, y, z)k

represents the velocity field of a fluid flowing through a region in space

then the integral of F ·T along a smooth curve in the region gives the

fluid’s flow along the curve. In that case, we have the following

Definition.

If C is a smooth curve in the domain of a continuous velocity field

F = M(x, y, z) i + N(x, y, z) j + P (x, y, z)k,

then the flow along the curve from t = a to t = b is

(10) Flow =

ˆ

C

F ·T ds

where T is the unit tangent vector. This is called the flow integral. If

the curve is a closed loop, the flow is called the circulation around the

curve.
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Example 5. Flow Integral

Let F = −4xy i + 8y j + 2k be a velocity field. Find the flow along the

curve C : r(t) = t i + t2 j + k, 0 ≤ t ≤ 2.

Observe that

dr = ( i + 2t j) dt

F(r(t)) = −4(t)(t2) i + 8t2 j + 2k

So by (10) we must evaluate
ˆ

C

F ·T ds =

ˆ t=2

t=0

F · dr

Here the right-hand side is one of the equivalent forms listed on

page 8. Continuing we have
ˆ t=2

t=0

F · dr =
ˆ 2

0

(
−4t3 i + 8t2 j + 2k

)
· ( i + 2t j) dt

=

ˆ 2

0

(
−4t3 + 16t3

)
dt

= 12

ˆ 2

0

t3 dt = 48
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Example 6. Circulation

Let F = y i + 2xy j be a velocity field. Find the counter-clockwise

circulation around the upper half of the unit circle. So let

C1 : r1(t) = cos t i + sin t j, 0 ≤ t ≤ π

C2 : r2(t) = t i, −1 ≤ t ≤ 1

It follows that

dr1 = (− sin t i + cos t j) dt

F(r1(t)) = sin t i + 2 cos t sin t j

Also,

dr2 = i dt and F(r2(t)) = 0
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It follows that the circulation is given by
ˆ

C1∪C2

F ·T ds =

ˆ

C1

F ·T ds +

ˆ

C2

F ·T ds

=

ˆ

C1

F ·T ds + 0

=

ˆ t=π

t=0

F · dr1

=

ˆ π

0

(
2 cos2 t sin t− sin2 t

)
dt

= 2

ˆ π

0

cos2 t sin t dt−
ˆ π

0

sin2 t dt

= −2

ˆ −1

1

u2 du− 1

2

ˆ π

0

(1− cos 2t) dt

= ...

=
4

3
− π

2

Remark. In section 16.4 we will discover another way to evaluate the

above integral.
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Example 7. Evaluate the integral below around the closed curves that

follow.

(11)

ˆ

C

1− y

x2 + (y − 1)2
dx +

x

x2 + (y − 1)2
dy

(a) C is the rectangle with corners (2, 3), (2,−3), (−2,−3), (−2, 3) and

the curve is traversed clockwise (once) when viewed from above.

So let

F =
1− y

x2 + (y − 1)2
i +

x

x2 + (y − 1)2
j

be a velocity field. Then the integral in (11) can be viewed as the

(clockwise) circulation integral
ı

C F · dr.

Not to scale

C1C3

C2

C4

In class we showed that
ˆ

C1

F · dr = − tan−1 2− tan−1 1

Similar calculations show that
ˆ

C3

F · dr = − tan−1 2− tan−1 1

and
ˆ

C4

F · dr = −2 tan−1 1

We evaluate
´

C2
F · dr2 below.
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Notice that C2 can be parameterized by the vector equation

r2(t) = (2− 4t) i− 3 j, 0 ≤ t ≤ 1. It follows that dr2 = −4 i dt, and

F(r2(t)) =
1

(1− 2t)2 + 4
i +

2− 4t

(1− 2t)2 + 4
j

so that
ˆ

C2

F · dr2 =
ˆ 1

0

−4

(1− 2t)2 + 4
dt

=

ˆ −1

1

2

u2 + 4
du

=
1

2

ˆ −1

1

1

(u/2)2 + 1
du

= tan−1(u/2)

−1

1

= −2 tan−1(1/2)

Now let I denote the integral in (11). Putting this all together yields

I =



C

F · dr

=

ˆ

C1

F · dr1 +
ˆ

C2

F · dr2 +
ˆ

C3

F · dr3 +
ˆ

C4

F · dr4

= −2(tan−1 2 + tan−1 1 + tan−1(1/2) + tan−1 1)

= −2π
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(b) C is the circle of radius 1 centered at (0, 1) traversed clockwise.

C

Now C can be parameterized by the vector equation

r(t) = cos t i + (1− sin t) j, 0 ≤ t ≤ 2π and

F(r(t)) = sin t i + cos t j

and

dr = −(sin t i + cos t j) dt

so that
ˆ

C

F · dr =
ˆ 2π

0

−(sin2 t + cos2 t) dt

= −2π

We will have more to say about this example in section 16.4.


