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16.1 Vector Fields

Definition. A vector field on a domain (in R
2 or R3) is a function that

assigns a vector to each point in the domain.

For example,

F(x, y, z) = M(x, y, z) i + N(x, y, z) j + P (x, y, z)k

or

F(x, y) = M(x, y) i + N(x, y) j

The field is continuous if the component functions M , N , and P are

continuous and differentiable if M , N , and P are differentiable.
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Example 1. Some Vector Fields

(a) The radial field

F = x i + y j
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(b) Let f (x, y) = xy. Then its gradient vector field ∇f = y i + x j is

shown below. What do the yellow curves represent?

We will have say more about gradient vector fields in subsequent

sections.
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(c) Another radial field

F = −x i− y j
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(d) The spin field

F =
−y

√

x2 + y2
i +

x
√

x2 + y2
j

Notice that in this case,

M(x, y) =
−y

√

x2 + y2
and N(x, y) =

x
√

x2 + y2
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(e) Another vector field

F = (x2 − y) i + (xy − y2) j
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(f) The vector field

F = cos x i− sin y j
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(g) The vector field

F =
2

2|x| + 1
i + sin y j
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Definition. The gradient field of a differentiable function f (x, y, z) is

the field of gradient vectors

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

Example 2. A Gradient Field

Let f (x, y) = sin x + cos y. Then the gradient field is

∇f = cosx i− sin y j

Definition. A vector field F is called a conservative if there is a

function f such that ∇f = F. In this case, f is called the potential

function of F. In other words, a vector field F is conservative if there is

a (potential) function f such that F = ∇f .

Example 3. Let F = y2 i+ 2xy j. Then F is a conservative vector field

since f (x, y) = xy2 is a potential function of F. That is

∇f = F

Remark. It turns out to be important to be able to identify a vector field

as the gradient field of some function. We will discuss this in more

detail in sections 16.3 and 16.5.
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Example 4. More Vector Fields

(a) The gradient vector field from Example 2 above. Notice the sink on

the positive x-axis.

∇f = cosx i− sin y j
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(b) The gradient vector field from Example 3 above. Notice the

gradient vectors are everywhere orthogonal to the level curves

f (x, y) = xy2 = const.

∇f = y2 i + 2xy j
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(c) A radial field with source at
(

1

2
, 1
4

)

.

F =

(

x−
1

2

)

i +

(

y −
1

4

)

j
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(d) Looks like a pair of rotational vector fields on both sides of the

y-axis.

F = xy i +
1

1 + y2
j


