16.1 Vector Fields

Definition. A vector field on a domain (in \mathbb{R}^{2} or \mathbb{R}^{3}) is a function that assigns a vector to each point in the domain.

For example,

$$
\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}
$$

or

$$
\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}
$$

The field is continuous if the component functions M, N, and P are continuous and differentiable if M, N, and P are differentiable.

Example 1．Some Vector Fields
（a）The radial field

$$
\mathbf{F}=x \mathbf{i}+y \mathbf{j}
$$

人N1119	$\uparrow 11111$
NRN1111	111111π
NNT\111	111 ノノオオ
人Nov	11
↔世－1	$\rightarrow \rightarrow \rightarrow$
くイレレ」	1
くムした！\downarrow	
レレレレレ	$\downarrow \downarrow \downarrow \downarrow \geqslant \geqslant \geqslant$
$\bullet \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow$ V

(b) Let $f(x, y)=x y$. Then its gradient vector field $\nabla f=y \mathbf{i}+x \mathbf{j}$ is shown below. What do the yellow curves represent?

We will have say more about gradient vector fields in subsequent sections.
(c) Another radial field

$$
\mathbf{F}=-x \mathbf{i}-y \mathbf{j}
$$

(d) The spin field

$$
\mathbf{F}=\frac{-y}{\sqrt{x^{2}+y^{2}}} \mathbf{i}+\frac{x}{\sqrt{x^{2}+y^{2}}} \mathbf{j}
$$

Notice that in this case,

$$
M(x, y)=\frac{-y}{\sqrt{x^{2}+y^{2}}} \text { and } N(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}
$$

(e) Another vector field

$$
\mathbf{F}=\left(x^{2}-y\right) \mathbf{i}+\left(x y-y^{2}\right) \mathbf{j}
$$

(f) The vector field

$$
\mathbf{F}=\cos x \mathbf{i}-\sin y \mathbf{j}
$$

(g) The vector field

$$
\mathbf{F}=\frac{2}{2|x|+1} \mathbf{i}+\sin y \mathbf{j}
$$

Definition. The gradient field of a differentiable function $f(x, y, z)$ is the field of gradient vectors

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

Example 2. A Gradient Field

Let $f(x, y)=\sin x+\cos y$. Then the gradient field is

$$
\nabla f=\cos x \mathbf{i}-\sin y \mathbf{j}
$$

Definition. A vector field \mathbf{F} is called a conservative if there is a function f such that $\nabla f=\mathbf{F}$. In this case, f is called the potential function of \mathbf{F}. In other words, a vector field \mathbf{F} is conservative if there is a (potential) function f such that $\mathbf{F}=\nabla f$.

Example 3. Let $\mathbf{F}=y^{2} \mathbf{i}+2 x y \mathbf{j}$. Then \mathbf{F} is a conservative vector field since $f(x, y)=x y^{2}$ is a potential function of \mathbf{F}. That is

$$
\nabla f=\mathbf{F}
$$

Remark. It turns out to be important to be able to identify a vector field as the gradient field of some function. We will discuss this in more detail in sections 16.3 and 16.5.

Example 4. More Vector Fields

(a) The gradient vector field from Example 2 above. Notice the sink on the positive x-axis.

$$
\nabla f=\cos x \mathbf{i}-\sin y \mathbf{j}
$$

(b) The gradient vector field from Example 3 above. Notice the gradient vectors are everywhere orthogonal to the level curves $f(x, y)=x y^{2}=$ const.

$$
\nabla f=y^{2} \mathbf{i}+2 x y \mathbf{j}
$$

(c) A radial field with source at $\left(\frac{1}{2}, \frac{1}{4}\right)$.

$$
\mathbf{F}=\left(x-\frac{1}{2}\right) \mathbf{i}+\left(y-\frac{1}{4}\right) \mathbf{j}
$$

(d) Looks like a pair of rotational vector fields on both sides of the y-axis.

$$
\mathbf{F}=x y \mathbf{i}+\frac{1}{1+y^{2}} \mathbf{j}
$$

