14.6

14.6 Directional Derivatives and the Gradient

Directional Derivatives in the Plane

Suppose that f(x,y) is a differentiable function. Then the rate at which
f changes with respect to ¢ along a differentiable curve
x = g(t), y = h(t) is given by the chain rule as

df Ofdx Ofdy
(1) dt Oz dt +8y dt

Now suppose that F, (xg, yo) lies in an open region R of the plane (as
shown) and that u = u; i + us j is a unit vector. Now let L be the line
passing through F, in the direction u. Then a parameterization of L is
given by

L:x=xy+su;, y=1uyy+Sus

A




14.6 2

Remark. Notice that s measures arc length from F, in the direction u,
l.e., s is the arc-length parameter. To see this note that

\/(s w)’ + (sug)” = 3\/(u1)2 + (ug)” =5

since u is a unit vector.

Now we wish to find the rate of change in the direction u, we need to
calculate df /ds at F,. We have

Definition. Directional Derivative

The derivative of f at F, in the direction of the unit vector u = u; i+ us j
IS

(2) (ﬁ) _ iy @0t su, g0 + sup) — f (20, o)
u,

ds S50+ S

provided that the limit exists.

Remark. The directional derivative is also denoted by (Dyf)p .
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Example 1. Directional Derivatives

Let f(z,y) be a function. Use equation (2) to find (D;f),

(z0,90)"

(D f) @o0) _Sgrg+f<m0+37y02_f<x07y0>
_9f
Oz

(z0,40)

In other words, the directional derivative in the i direction is the partial
derivative with respect to =, as we mentioned last time. In symbols,

af
T

Similarly,

of

:D-
0y if
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Example 2. Finding a Directional Derivative

Let f(x,y) =2xy +yandletu = %i+ \/7?1. Use equation (2) to find
(Duf)(l,Q)'

f(1+s/2,2+ sv3/2) — f(1,2)

(Duf>(172) — hm

oy 2048/2) (24 sv/3/2) + (2+ sv3/2) — (2(1)(3) + (2))
. 4+ sV3+25+5* (V3/2) +2+sV3/2—-6
s—07T S
. s (V3+2+5V3/2+3/2)
= lim (V3+2+5v3/2+ V3/2)
3344
2

Remark. Observe that the directional derivative is a scalar. In fact, the
directional derivative gives the instantaneous rate of change in the u
direction.
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The Directional Derivative and the Gradient

Let f be a differentiable function, P = (x,y), and Py = P, (x, yo) and let
u = u; i+ usj be a unit vector.

Now since f is differentiable, the limit below exists along any path to
(an yO)
(3) 0= lim f(z,y) — f(wo,90) — fu (o, 0) (¥ — x0) — fy (20, 0) (Y — yo)

o \/(x—x0)2+(y—y0)2

In particular, the limit exists along the path

(4) T=T9+Suy, Y=y +Ssuy as s — 0"
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By combining (4) into (3), we obtain

0= lim {f(x0+su1,y0+su2) — f (%0, 90)
S

s—0T

L (w0, yo) (su1) — fy (x0, Yo) (Suz)}

S

f(xo+ sur,yo + su2) — f (zo, Yo)

B slif(%r s
iy Jr (@030) (sun) — f (o, o) (sus)
s—0T S
= <Duf)P0 — Sl_ifél_i_ fx (QZ’O; yO) (ul) I fy (.f(), yO) (Ug) S

= (Duf)p, — fu (@0, 90) w1 — fy (20, Yo)

In other words,

(Duf>p0 = fu (20, 90) w1 + £, (20, Yo) uo

_(9f of
— <%> N Ul + <8—y> " U9

160), 5+ (30) 3] i

[\ "y u
-~

Vf
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Definition. The Gradient Vector

The gradient vector of f(x,y) at P, (xo, yo) is the vector

(5) Vi=Zrit 2

In 3 dimensions we make the obvious adjustments. That is, the
gradient vector of f(x,y, z) at Py(xo, yo, 20) IS the vector

0 0 0
(6) Vf—a—£i+a—§j+a—£k

The gradient vector is usually just called the gradient and is denoted
by
Vf or gradf or delf

Remark. Please review the significance of the gradient in the text on
page 966.
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Theorem 1.

A careful inspection of the calculations above yields the following nifty

formula.

(7)

df B
(d—) =T

Example 3. Directional Derivatives using (7).

d.

Verify the result from the previous example.
For f(z,y) = 2zy +y with u = 1i+ 2 find (Duf)1,.
Now

L of. of.
Vf_8x1+8yj

— Vf=2yi+ 2z +1)]j
hence

(V) =41+3]
Thus

as we saw before.

Let g(z,y) = xy + 2siny and let u = cos#i + sin 6 j. Find each of the

following.

The Directional Derivative is a Dot Product
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. Dyug
g> =y and g, = z + 2cosy so that

Vg=yi+ (x+2cosy)j
Thus
Dyg=Vg-u
=ycos + (x +2cosy)sinb
ii. Find Dyg for 8 = /3.

From part (i) we have
Dyg =ycosf+ (x+2cosy)siné
= ycos (m/3) + (x + 2cosy) sin (7/3)

= y/2+ V2 (x + 2cosy) /2
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The Direction of Most Rapid Change

Notice that by Theorem 1 and definitions from chapter 12, we have

Dyf = (Vf) "u
= |V /| |u| cos@
= |V f| cosd

where 0 is the angle between V f and u. It follows that if V f = 0 then

1. The function increases most rapidly when cos@ = 1, i.e., when u is
in the direction of the gradient V f. In this case, the directional
derivative is equal to |V f|.

2. The function decreases the most rapidly in the direction of —V f. In
this case the directional derivative is — |V f].

3. Any direction u orthogonal to a nonzero gradient is a direction of
zero change for if § = 7/2, then

Dyuf =|Vf|cos(m/2) =0
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Example 4. Using the Gradient

$2

y—a

Let f(z,y) =

a. Sketch the level curves ( f(z,y) =c¢) of f. (Use c = —3, 1/2, and 4.)

_ 1
For example, if c = 7 c=1/2

x? 1
— = —
y—x 2
— vy =22"+z c=4"7
which is shown in red.

By examining the level curves, our intuition suggests that the
direction of maximal change at (—1, 1) should be roughly in the
direction shown. Why?
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b.

Find the direction of maximal change at the point (—1,1).

12

From calculus, we know that the slope of the tangent line at (—1,1)

iS
3_1 =y |
= -3
It follows that the slope of the normal is
mt=""
3

So we expect the gradient through (—1, 1) to be the same as the
normal (shown above in green). Now

2z(y — x) — x*(—1)
(y — )

2y — 2 —3
= —— = f.(—1,1) = —

fx:
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and
- _
= THMRUET
Hence
—3. 1
<Vf)(_”):T1_ZJ

as expected.

Remark. Technically, we should find a unit vector since the
question did ask us for the direction. So the direction of maximal
increase is the unit vector

1 .
\/—1—0(—31—J)

What is the direction of zero change at (—1,1)?
Clearly, it is \/% (i — 3j) or its negative.

13
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More About Level Curves and the Gradient

Suppose that f(x,y) = c along a smooth curve r = g(¢)i+ h(t)j (so
r(t) is a level curve of f), then f (g(t), h(t)) = c. If f is differentiable we
may differentiate both sides so that

d d
g0, h(D) = e
dfdg Ofdh
8xdt+8ydt_0
|t follows that
of . of. dg. dh.)\
(8x1+8y‘]> (dt1+dtJ)_0
or
dr
Vf-%:o

In other words, V f is orthogonal to the level curve f (g(t),h(t)) = c at
every point of the domain of the differentiable function f.
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Example 5. Find the equation of the tangent line to the hyperbola

(®) 7oy =1

Now let f(x,y) = 92 — 4y°. Then the hyperbola (8) is the (smooth) level
curve f(x,y) = 36. Find the equation of the tangent line at

Py = (v52/3,2).
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Notice that if n = Ai+ Bjis normal to the tangent line, T, at F,, then
the equation for T is

(9) O—A(x—@)JrB(y—Q)

But
Vf=18xi—8yj and
(Vf)p, =6V52i—16]
So by (9)

16



