14.6 Directional Derivatives and the Gradient

Directional Derivatives in the Plane

Suppose that $f(x, y)$ is a differentiable function. Then the rate at which f changes with respect to t along a differentiable curve
$x=g(t), y=h(t)$ is given by the chain rule as

$$
\begin{equation*}
\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} \tag{1}
\end{equation*}
$$

Now suppose that $P_{0}\left(x_{0}, y_{0}\right)$ lies in an open region R of the plane (as shown) and that $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}$ is a unit vector. Now let L be the line passing through P_{0} in the direction \mathbf{u}. Then a parameterization of L is given by

$$
L: x=x_{0}+s u_{1}, \quad y=y_{0}+s u_{2}
$$

Remark. Notice that s measures arc length from P_{0} in the direction u, i.e., s is the arc-length parameter. To see this note that

$$
\sqrt{\left(s u_{1}\right)^{2}+\left(s u_{2}\right)^{2}}=s \sqrt{\left(u_{1}\right)^{2}+\left(u_{2}\right)^{2}}=s
$$

since u is a unit vector.
Now we wish to find the rate of change in the direction \mathbf{u}, we need to calculate $d f / d s$ at P_{0}. We have

Definition. Directional Derivative

The derivative of f at P_{0} in the direction of the unit vector $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}$ is
(2)

$$
\left(\frac{d f}{d s}\right)_{\mathbf{u}, P_{0}}=\lim _{s \rightarrow 0^{+}} \frac{f\left(x_{0}+s u_{1}, y_{0}+s u_{2}\right)-f\left(x_{0}, y_{0}\right)}{s}
$$

provided that the limit exists.
Remark. The directional derivative is also denoted by $\left(D_{\mathbf{u}} f\right)_{P_{0}}$.

Example 1. Directional Derivatives

Let $f(x, y)$ be a function. Use equation (2) to find $\left(D_{\mathbf{i}} f\right)_{\left(x_{0}, y_{0}\right)}$.

$$
\begin{aligned}
\left(D_{\mathbf{i}} f\right)_{\left(x_{0}, y_{0}\right)} & =\lim _{s \rightarrow 0^{+}} \frac{f\left(x_{0}+s, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{s} \\
& =\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}
\end{aligned}
$$

In other words, the directional derivative in the i direction is the partial derivative with respect to x, as we mentioned last time. In symbols,

$$
\frac{\partial f}{\partial x}=D_{\mathbf{i}} f
$$

Similarly,

$$
\frac{\partial f}{\partial y}=D_{\mathbf{j}} f
$$

Example 2. Finding a Directional Derivative

Let $f(x, y)=2 x y+y$ and let $\mathbf{u}=\frac{1}{2} \mathbf{i}+\frac{\sqrt{3}}{2} \mathbf{j}$. Use equation (2) to find $\left(D_{\mathbf{u}} f\right)_{(1,2)}$.

$$
\begin{aligned}
\left(D_{\mathbf{u}} f\right)_{(1,2)} & =\lim _{s \rightarrow 0^{+}} \frac{f(1+s / 2,2+s \sqrt{3} / 2)-f(1,2)}{s} \\
& =\lim _{s \rightarrow 0^{+}} \frac{2(1+s / 2)(2+s \sqrt{3} / 2)+(2+s \sqrt{3} / 2)-(2(1)(3)+(2))}{s} \\
& =\lim _{s \rightarrow 0^{+}} \frac{4+s \sqrt{3}+2 s+s^{2}(\sqrt{3} / 2)+2+s \sqrt{3} / 2-6}{s} \\
& =\lim _{s \rightarrow 0^{+}} \frac{s(\sqrt{3}+2+s \sqrt{3} / 2+\sqrt{3} / 2)}{s} \\
& =\lim _{s \rightarrow 0^{+}}(\sqrt{3}+2+s \sqrt{3} / 2+\sqrt{3} / 2) \\
& =\frac{3 \sqrt{3}+4}{2}
\end{aligned}
$$

Remark. Observe that the directional derivative is a scalar. In fact, the directional derivative gives the instantaneous rate of change in the u direction.

The Directional Derivative and the Gradient

Let f be a differentiable function, $P=(x, y)$, and $P_{0}=P_{0}\left(x_{0}, y_{0}\right)$ and let $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}$ be a unit vector.

Now since f is differentiable, the limit below exists along any path to $\left(x_{0}, y_{0}\right)$.

$$
\begin{equation*}
0=\lim _{P \rightarrow P_{0}} \frac{f(x, y)-f\left(x_{0}, y_{0}\right)-f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)-f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}} \tag{3}
\end{equation*}
$$

In particular, the limit exists along the path

$$
\begin{equation*}
x=x_{0}+s u_{1}, y=y_{0}+s u_{2} \text { as } s \rightarrow 0^{+} \tag{4}
\end{equation*}
$$

By combining (4) into (3), we obtain

$$
\begin{aligned}
& 0= \lim _{s \rightarrow 0^{+}}\left\{\begin{array}{l}
f\left(x_{0}+s u_{1}, y_{0}+s u_{2}\right)-f\left(x_{0}, y_{0}\right) \\
s
\end{array}\right. \\
&\left.-\frac{f_{x}\left(x_{0}, y_{0}\right)\left(s u_{1}\right)-f_{y}\left(x_{0}, y_{0}\right)\left(s u_{2}\right)}{s}\right\} \\
&= \lim _{s \rightarrow 0^{+}} \frac{f\left(x_{0}+s u_{1}, y_{0}+s u_{2}\right)-f\left(x_{0}, y_{0}\right)}{s} \\
&-\lim _{s \rightarrow 0^{+}} \frac{f_{x}\left(x_{0}, y_{0}\right)\left(s u_{1}\right)-f_{y}\left(x_{0}, y_{0}\right)\left(s u_{2}\right)}{s} \\
&=\left(D_{\mathbf{u}} f\right)_{P_{0}}-\lim _{s \rightarrow 0^{+}} \frac{f_{x}\left(x_{0}, y_{0}\right)\left(u_{1}\right)-f_{y}\left(x_{0}, y_{0}\right)\left(u_{2}\right)}{1} \frac{s}{s} \\
&=\left(D_{\mathbf{u}} f\right)_{P_{0}}-f_{x}\left(x_{0}, y_{0}\right) u_{1}-f_{y}\left(x_{0}, y_{0}\right) u_{2}
\end{aligned}
$$

In other words,

$$
\begin{aligned}
\left(D_{\mathbf{u}} f\right)_{P_{0}} & =f_{x}\left(x_{0}, y_{0}\right) u_{1}+f_{y}\left(x_{0}, y_{0}\right) u_{2} \\
& =\left(\frac{\partial f}{\partial x}\right)_{P_{0}} u_{1}+\left(\frac{\partial f}{\partial y}\right)_{P_{0}} u_{2} \\
& =\underbrace{\left[\left(\frac{\partial f}{\partial x}\right)_{P_{0}} \mathbf{i}+\left(\frac{\partial f}{\partial y}\right)_{P_{0}}\right]}_{\nabla f} \cdot \underbrace{\left(u_{1} \mathbf{i}+u_{2} \mathbf{j}\right)}_{\mathbf{u}}
\end{aligned}
$$

Definition. The Gradient Vector

The gradient vector of $f(x, y)$ at $P_{0}\left(x_{0}, y_{0}\right)$ is the vector

$$
\begin{equation*}
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j} \tag{5}
\end{equation*}
$$

In 3 dimensions we make the obvious adjustments. That is, the gradient vector of $f(x, y, z)$ at $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is the vector
(6)

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

The gradient vector is usually just called the gradient and is denoted by

$$
\nabla f \quad \text { or } \operatorname{grad} f \text { or } \operatorname{del} f
$$

Remark. Please review the significance of the gradient in the text on page 966.

Theorem 1. The Directional Derivative is a Dot Product

A careful inspection of the calculations above yields the following nifty formula.

$$
\begin{equation*}
\left(\frac{d f}{d s}\right)_{\mathbf{u}, P_{0}}=(\nabla f)_{P_{0}} \cdot \mathbf{u} \tag{7}
\end{equation*}
$$

Example 3. Directional Derivatives using (7).

a. Verify the result from the previous example.

For $f(x, y)=2 x y+y$ with $\mathbf{u}=\frac{1}{2} \mathbf{i}+\frac{\sqrt{3}}{2} \mathbf{j}$ find $\left(D_{\mathbf{u}} f\right)_{(1,2)}$.
Now

$$
\begin{aligned}
\nabla f & =\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j} \\
\Longrightarrow \nabla f & =2 y \mathbf{i}+(2 x+1) \mathbf{j}
\end{aligned}
$$

hence

$$
(\nabla f)_{(1,2)}=4 \mathbf{i}+3 \mathbf{j}
$$

Thus

$$
\begin{aligned}
\left(D_{\mathbf{u}} f\right)_{(1,2)} & =(4 \mathbf{i}+3 \mathbf{j}) \cdot\left(\frac{1}{2} \mathbf{i}+\frac{\sqrt{3}}{2} \mathbf{j}\right) \\
& =\frac{4}{2}+\frac{3 \sqrt{3}}{2}
\end{aligned}
$$

as we saw before.
b. Let $g(x, y)=x y+2 \sin y$ and let $\mathbf{u}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}$. Find each of the following.
i. $D_{\mathrm{u}} g$
$g_{x}=y$ and $g_{y}=x+2 \cos y$ so that

$$
\nabla g=y \mathbf{i}+(x+2 \cos y) \mathbf{j}
$$

Thus

$$
\begin{aligned}
D_{\mathbf{u}} g & =\nabla g \cdot \mathbf{u} \\
& =y \cos \theta+(x+2 \cos y) \sin \theta
\end{aligned}
$$

ii. Find $D_{\mathbf{u}} g$ for $\theta=\pi / 3$.

From part (i) we have

$$
\begin{aligned}
D_{\mathbf{u}} g & =y \cos \theta+(x+2 \cos y) \sin \theta \\
& =y \cos (\pi / 3)+(x+2 \cos y) \sin (\pi / 3) \\
& =y / 2+\sqrt{2}(x+2 \cos y) / 2
\end{aligned}
$$

The Direction of Most Rapid Change

Notice that by Theorem 1 and definitions from chapter 12, we have

$$
\begin{aligned}
D_{\mathbf{u}} f & =(\nabla f) \cdot \mathbf{u} \\
& =|\nabla f||\mathbf{u}| \cos \theta \\
& =|\nabla f| \cos \theta
\end{aligned}
$$

where θ is the angle between ∇f and \mathbf{u}. It follows that if $\nabla f \neq \mathbf{0}$ then

1. The function increases most rapidly when $\cos \theta=1$, i.e., when \mathbf{u} is in the direction of the gradient ∇f. In this case, the directional derivative is equal to $|\nabla f|$.
2. The function decreases the most rapidly in the direction of $-\nabla f$. In this case the directional derivative is $-|\nabla f|$.
3. Any direction u orthogonal to a nonzero gradient is a direction of zero change for if $\theta=\pi / 2$, then

$$
D_{\mathbf{u}} f=|\nabla f| \cos (\pi / 2)=0
$$

Example 4. Using the Gradient

Let $f(x, y)=\frac{x^{2}}{y-x}$.
a. Sketch the level curves $(f(x, y)=c)$ of f. (Use $c=-3,1 / 2$, and 4.)

For example, if $c=\frac{1}{2}$

$$
\begin{aligned}
& \Longrightarrow \frac{x^{2}}{y-x}=\frac{1}{2} \\
& \Longrightarrow y=2 x^{2}+x
\end{aligned}
$$

which is shown in red.

By examining the level curves, our intuition suggests that the direction of maximal change at $(-1,1)$ should be roughly in the direction shown. Why?
b. Find the direction of maximal change at the point $(-1,1)$.

From calculus, we know that the slope of the tangent line at $(-1,1)$ is

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{x=-1} & =\left.(4 x+1)\right|_{x=-1} \\
& =-3
\end{aligned}
$$

It follows that the slope of the normal is

$$
m^{\perp}=\frac{-1}{3}
$$

So we expect the gradient through $(-1,1)$ to be the same as the normal (shown above in green). Now

$$
\begin{aligned}
f_{x} & =\frac{2 x(y-x)-x^{2}(-1)}{(y-x)^{2}} \\
& =\frac{2 x y-x^{2}}{(y-x)^{2}} \quad \Longrightarrow f_{x}(-1,1)=\frac{-3}{4}
\end{aligned}
$$

and

$$
f_{y}=\frac{-x^{2}}{(y-x)^{2}} \quad \Longrightarrow f_{y}(-1,1)=\frac{-1}{4}
$$

Hence

$$
(\nabla f)_{(-1,1)}=\frac{-3}{4} \mathbf{i}-\frac{1}{4} \mathbf{j}
$$

as expected.
Remark. Technically, we should find a unit vector since the question did ask us for the direction. So the direction of maximal increase is the unit vector

$$
\frac{1}{\sqrt{10}}(-3 \mathbf{i}-\mathbf{j})
$$

c. What is the direction of zero change at $(-1,1)$?

Clearly, it is $\frac{1}{\sqrt{10}}(\mathbf{i}-3 \mathbf{j})$ or its negative.

More About Level Curves and the Gradient

Suppose that $f(x, y)=c$ along a smooth curve $\mathbf{r}=g(t) \mathbf{i}+h(t) \mathbf{j}$ (so $\mathbf{r}(t)$ is a level curve of f), then $f(g(t), h(t))=c$. If f is differentiable we may differentiate both sides so that

$$
\begin{aligned}
\frac{d}{d t} f(g(t), h(t)) & =\frac{d}{d t} c \\
\Longrightarrow \frac{\partial f}{\partial x} \frac{d g}{d t}+\frac{\partial f}{\partial y} \frac{d h}{d t} & =0
\end{aligned}
$$

It follows that

$$
\left(\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}\right) \cdot\left(\frac{d g}{d t} \mathbf{i}+\frac{d h}{d t} \mathbf{j}\right)=0
$$

or

$$
\nabla f \cdot \frac{d \mathbf{r}}{d t}=0
$$

In other words, ∇f is orthogonal to the level curve $f(g(t), h(t))=c$ at every point of the domain of the differentiable function f.

Example 5. Find the equation of the tangent line to the hyperbola
(8)

$$
\frac{x^{2}}{2^{2}}-\frac{y^{2}}{3^{2}}=1
$$

Now let $f(x, y)=9 x^{2}-4 y^{2}$. Then the hyperbola (8) is the (smooth) level curve $f(x, y)=36$. Find the equation of the tangent line at $P_{0}=(\sqrt{52} / 3,2)$.

Notice that if $\mathbf{n}=A \mathbf{i}+B \mathbf{j}$ is normal to the tangent line, T, at P_{0}, then the equation for T is
(9)

$$
0=A\left(x-\frac{\sqrt{52}}{3}\right)+B(y-2)
$$

But

$$
\begin{aligned}
\nabla f & =18 x \mathbf{i}-8 y \mathbf{j} \quad \text { and } \\
(\nabla f)_{P_{0}} & =6 \sqrt{52} \mathbf{i}-16 \mathbf{j}
\end{aligned}
$$

So by (9)

$$
T: \quad 0=6 \sqrt{52}\left(x-\frac{\sqrt{52}}{3}\right)-16(y-2)
$$

