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14.6 Directional Derivatives and the Gradient

Directional Derivatives in the Plane

Suppose that f (x, y) is a differentiable function. Then the rate at which

f changes with respect to t along a differentiable curve

x = g(t), y = h(t) is given by the chain rule as

(1)
df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

Now suppose that P0 (x0, y0) lies in an open region R of the plane (as

shown) and that u = u1 i + u2 j is a unit vector. Now let L be the line

passing through P0 in the direction u. Then a parameterization of L is

given by

L : x = x0 + s u1, y = y0 + s u2

b

P0

u

L
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Remark. Notice that s measures arc length from P0 in the direction u,

i.e., s is the arc-length parameter. To see this note that
√

(s u1)
2 + (s u2)

2 = s

√

(u1)
2 + (u2)

2 = s

since u is a unit vector.

Now we wish to find the rate of change in the direction u, we need to

calculate df/ds at P0. We have

Definition. Directional Derivative

The derivative of f at P0 in the direction of the unit vector u = u1 i + u2 j

is

(2)

(
df

ds

)

u, P0

= lim
s→0+

f (x0 + s u1, y0 + s u2)− f (x0, y0)

s

provided that the limit exists.

Remark. The directional derivative is also denoted by (Duf )P0.
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Example 1. Directional Derivatives

Let f (x, y) be a function. Use equation (2) to find (D if )(x0,y0).

(D if )(x0,y0) = lim
s→0+

f (x0 + s, y0)− f (x0, y0)

s

=
∂f

∂x (x0,y0)

In other words, the directional derivative in the i direction is the partial

derivative with respect to x, as we mentioned last time. In symbols,

∂f

∂x
= D if

Similarly,

∂f

∂y
= D jf
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Example 2. Finding a Directional Derivative

Let f (x, y) = 2xy + y and let u =
1

2
i +

√
3

2
j. Use equation (2) to find

(Duf )(1,2).

(Duf )(1,2) = lim
s→0+

f
(
1 + s/2, 2 + s

√
3/2
)
− f (1, 2)

s

= lim
s→0+

2 (1 + s/2)
(
2 + s

√
3/2
)
+
(
2 + s

√
3/2
)
− (2(1)(3) + (2))

s

= lim
s→0+

4 + s
√
3 + 2s + s2

(√
3/2
)
+ 2 + s

√
3/2− 6

s

= lim
s→0+

s
(√

3 + 2 + s
√
3/2 +

√
3/2
)

s

= lim
s→0+

(√
3 + 2 + s

√
3/2 +

√
3/2
)

=
3
√
3 + 4

2

Remark. Observe that the directional derivative is a scalar. In fact, the

directional derivative gives the instantaneous rate of change in the u

direction.
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The Directional Derivative and the Gradient

Let f be a differentiable function, P = (x, y), and P0 = P0 (x0, y0) and let

u = u1 i + u2 j be a unit vector.

Now since f is differentiable, the limit below exists along any path to
(x0, y0).

(3) 0 = lim
P→P0

f (x, y)− f (x0, y0)− fx (x0, y0) (x− x0)− fy (x0, y0) (y − y0)
√

(x− x0)
2 + (y − y0)

2

In particular, the limit exists along the path

(4) x = x0 + s u1, y = y0 + s u2 as s → 0+
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By combining (4) into (3), we obtain

0 = lim
s→0+

{
f (x0 + s u1, y0 + s u2)− f (x0, y0)

s

− fx (x0, y0) (su1)− fy (x0, y0) (su2)

s

}

= lim
s→0+

f (x0 + s u1, y0 + s u2)− f (x0, y0)

s

− lim
s→0+

fx (x0, y0) (su1)− fy (x0, y0) (su2)

s

= (Duf )P0 − lim
s→0+

fx (x0, y0) (u1)− fy (x0, y0) (u2)

1

s

s

= (Duf )P0 − fx (x0, y0)u1 − fy (x0, y0) u2

In other words,

(Duf )P0 = fx (x0, y0)u1 + fy (x0, y0)u2

=

(
∂f

∂x

)

P0

u1 +

(
∂f

∂y

)

P0

u2

=

[(
∂f

∂x

)

P0

i +

(
∂f

∂y

)

P0

j

]

︸ ︷︷ ︸

∇f

· (u1 i + u2 j)
︸ ︷︷ ︸

u
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Definition. The Gradient Vector

The gradient vector of f (x, y) at P0 (x0, y0) is the vector

(5) ∇f =
∂f

∂x
i +

∂f

∂y
j

In 3 dimensions we make the obvious adjustments. That is, the

gradient vector of f (x, y, z) at P0(x0, y0, z0) is the vector

(6) ∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

The gradient vector is usually just called the gradient and is denoted

by

∇f or grad f or del f

Remark. Please review the significance of the gradient in the text on

page 966.
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Theorem 1. The Directional Derivative is a Dot Product

A careful inspection of the calculations above yields the following nifty

formula.

(7)

(
df

ds

)

u,P0

= (∇f )P0 · u

Example 3. Directional Derivatives using (7).

a. Verify the result from the previous example.

For f (x, y) = 2xy + y with u = 1
2 i +

√
3
2 j find (Duf )(1,2).

Now

∇f =
∂f

∂x
i +

∂f

∂y
j

=⇒ ∇f = 2y i + (2x + 1) j

hence

(∇f )(1,2) = 4 i + 3 j

Thus

(Duf )(1,2) = (4 i + 3 j) ·
(

1

2
i +

√
3

2
j

)

=
4

2
+

3
√
3

2

as we saw before.

b. Let g(x, y) = xy + 2 sin y and let u = cos θ i + sin θ j. Find each of the

following.
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i. Dug

gx = y and gy = x + 2 cos y so that

∇g = y i + (x + 2 cos y) j

Thus

Dug = ∇g · u
= y cos θ + (x + 2 cos y) sin θ

ii. Find Dug for θ = π/3.

From part (i) we have

Dug = y cos θ + (x + 2 cos y) sin θ

= y cos (π/3) + (x + 2 cos y) sin (π/3)

= y/2 +
√
2 (x + 2 cos y) /2
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The Direction of Most Rapid Change

Notice that by Theorem 1 and definitions from chapter 12, we have

Duf = (∇f ) · u
= |∇f | |u| cos θ
= |∇f | cos θ

where θ is the angle between ∇f and u. It follows that if ∇f 6= 0 then

1. The function increases most rapidly when cos θ = 1, i.e., when u is

in the direction of the gradient ∇f . In this case, the directional

derivative is equal to |∇f |.

2. The function decreases the most rapidly in the direction of −∇f . In

this case the directional derivative is − |∇f |.

3. Any direction u orthogonal to a nonzero gradient is a direction of

zero change for if θ = π/2, then

Duf = |∇f | cos (π/2) = 0
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Example 4. Using the Gradient

Let f (x, y) =
x2

y − x
.

a. Sketch the level curves ( f (x, y) = c ) of f . (Use c = −3, 1/2, and 4.)

b

c = 1/2

c = 4

For example, if c =
1

2

=⇒ x2

y − x
=

1

2

=⇒ y = 2x2 + x

which is shown in red.

By examining the level curves, our intuition suggests that the

direction of maximal change at (−1, 1) should be roughly in the

direction shown. Why?
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b. Find the direction of maximal change at the point (−1, 1).

b

From calculus, we know that the slope of the tangent line at (−1, 1)

is

dy

dx x=−1

= (4x + 1)
x=−1

= −3

It follows that the slope of the normal is

m⊥ =
−1

3

So we expect the gradient through (−1, 1) to be the same as the

normal (shown above in green). Now

fx =
2x(y − x)− x2(−1)

(y − x)2

=
2xy − x2

(y − x)2
=⇒ fx(−1, 1) =

−3

4
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and

fy =
−x2

(y − x)2
=⇒ fy(−1, 1) =

−1

4

Hence

(∇f )(−1,1) =
−3

4
i− 1

4
j

as expected.

Remark. Technically, we should find a unit vector since the

question did ask us for the direction. So the direction of maximal

increase is the unit vector

1√
10

(−3 i− j)

c. What is the direction of zero change at (−1, 1)?

Clearly, it is 1√
10
(i− 3 j) or its negative.
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More About Level Curves and the Gradient

Suppose that f (x, y) = c along a smooth curve r = g(t) i + h(t) j (so

r(t) is a level curve of f ), then f (g(t), h(t)) = c. If f is differentiable we

may differentiate both sides so that

d

dt
f (g(t), h(t)) =

d

dt
c

=⇒ ∂f

∂x

dg

dt
+

∂f

∂y

dh

dt
= 0

It follows that
(
∂f

∂x
i +

∂f

∂y
j

)

·
(
dg

dt
i +

dh

dt
j

)

= 0

or

∇f · dr
dt

= 0

In other words, ∇f is orthogonal to the level curve f (g(t), h(t)) = c at

every point of the domain of the differentiable function f .
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Example 5. Find the equation of the tangent line to the hyperbola

(8)
x2

22
− y2

32
= 1

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

Now let f (x, y) = 9x2 − 4y2. Then the hyperbola (8) is the (smooth) level

curve f (x, y) = 36. Find the equation of the tangent line at

P0 =
(√

52/3, 2
)
.
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−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

b P0

T

Notice that if n = A i +B j is normal to the tangent line, T , at P0, then

the equation for T is

0 = A

(

x−
√
52

3

)

+B (y − 2)(9)

But

∇f = 18x i− 8y j and

(∇f )P0 = 6
√
52 i− 16 j

So by (9)

T : 0 = 6
√
52

(

x−
√
52

3

)

− 16 (y − 2)


