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14.5 The Chain Rule

Functions of Two or Three Variables

Theorem 1. Chain Rule for Functions of Three Independent

Variables

If w = f (x, y, z) is differentiable and x, y and z are differentiable

functions of t, then w is a differentiable function of t and

(1)
dw

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt
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Theorem 2. Chain Rule for Functions of Two Independent

Variables and Three Intermediate Variables

If w = f (x, y, z) and x = g(r, s), y = h(r, s) and z = k(r, s) are

differentiable functions, then w has partial derivatives with respect to r

and s and
∂w

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
+

∂f

∂z

∂z

∂r
(2)

∂w

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
+

∂f

∂z

∂z

∂s
(3)

Example 1. Application - Implicit Function Theorem

Suppose that F (x, y, z) is differentiable and that the equation

(4) F (x, y, z) = C

defines z implicitly as a (differentiable) function of x and y (i.e.,

z = f (x, y) and we may assume that x and y are independent

variables). Then, with the help of the chain rule, we may differentiate

both sides of (4) with respect to x to obtain

(5)
∂F

∂x

∂x

∂x
+

∂F

∂y

∂y

∂x
+

∂F

∂z

∂z

∂x
= 0

But
∂x

∂x
= 1 and

∂y

∂x
= 0 (since y does not depend on x). Thus (5)

reduces to
∂F

∂x
(1) +

∂F

∂y
(0) +

∂F

∂z

∂z

∂x
= 0

or
∂F

∂x
+

∂F

∂z

∂z

∂x
= 0



14.5 3

Rearranging we obtain

∂z

∂x
=

−

∂F

∂x
∂F

∂z

=
−Fx

Fz

Remark. Also, see the next example about the use of the phrase

“independent variables”.
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Example 2. Exercise 14.5.51 - Modified

If z = f (x, y) is differentiable, with x = r2 + s2 and y = 2rs, find

∂2z/∂s ∂r. (Note: That r and s are independent variables goes without

saying.)

By the Chain Rule we have

(6)
∂z

∂r
=

∂z

∂x

∂x

∂r
+

∂z

∂y

∂y

∂r
= 2r

∂z

∂x
+ 2s

∂z

∂y

Before proceeding, we should discuss the right-hand side of (6).

Specifically, we should ask ourselves which of the expressions are

functions of s. By assumption, r is not a function of s, but ∂z/∂x,

∂z/∂y, and s are all (differentiable) functions of s.

To make this all readable, we introduce the operator Ds to mean “take

the partial with respect to s”. We also factor out a 2. Thus

Ds

(
1

2

∂z

∂r

)

= Ds

(

r
∂z

∂x
+ s

∂z

∂y

)

= rDs

(
∂z

∂x

)

+Ds

(

s
∂z

∂y

)

︸ ︷︷ ︸

product

= rDs

(
∂z

∂x

)

+Ds (s)
∂z

∂y
+ sDs

(
∂z

∂y

)

︸ ︷︷ ︸

after applying the product rule

and since Ds(s) = 1, the last expression reduces to

= rDs

(
∂z

∂x

)

+
∂z

∂y
+ sDs

(
∂z

∂y

)

(7)
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So the question is, how on earth do we calculate

Ds

(
∂z

∂x

)

and Ds

(
∂z

∂y

)

Perhaps one more notational adjustment might help. Let G and H

denote the ∂z/∂x and ∂z/∂y, resp. Then G is a differentiable function

of x and y and

Ds

(
∂z

∂x

)

= Ds (G) =
∂G

∂s

=
∂G

∂x

∂x

∂s
+

∂G

∂y

∂y

∂s

=
∂z2

∂x2
2s +

∂z2

∂y ∂x
2r

and, similarly

Ds

(
∂z

∂y

)

=
∂H

∂x

∂x

∂s
+

∂H

∂y

∂y

∂s

=
∂z2

∂x ∂y
2s +

∂z2

∂y2
2r

=
∂z2

∂y ∂x
2s +

∂z2

∂y2
2r

Since by the given assumptions from Example 14.5.7, we may

conclude that
∂z2

∂y ∂x
=

∂z2

∂x ∂y
.
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Putting all of this together we have

∂z2

∂s ∂r
= Ds

(
∂z

∂r

)

= 2Ds

(
1

2

∂z

∂r

)

= 2

{

rDs

(
∂z

∂x

)

+
∂z

∂y
+ sDs

(
∂z

∂y

)}

= 2

{

r

(
∂z2

∂x2
2s +

∂z2

∂y ∂x
2r

)

+
∂z

∂y
+ s

(
∂z2

∂y ∂x
2s +

∂z2

∂y2
2r

)}

= 2
∂z

∂y
+ 4rs

∂z2

∂x2
+ 4(r2 + s2)

∂z2

∂y ∂x
+ 4rs

∂z2

∂y2


