14.5 The Chain Rule

Functions of Two or Three Variables

Theorem 1. Chain Rule for Functions of Three Independent Variables

If w = f(x, y, z) is differentiable and x, y and z are differentiable functions of t, then w is a differentiable function of t and

(1)
$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt}$$

Theorem 2. Chain Rule for Functions of Two Independent Variables and Three Intermediate Variables

If w = f(x, y, z) and x = g(r, s), y = h(r, s) and z = k(r, s) are differentiable functions, then w has partial derivatives with respect to r and s and

(2)
$$\frac{\partial w}{\partial r} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial r} + \frac{\partial f}{\partial z}\frac{\partial z}{\partial r}$$

(3)
$$\frac{\partial w}{\partial s} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial s} + \frac{\partial f}{\partial z}\frac{\partial z}{\partial s}$$

Example 1. Application - Implicit Function Theorem

Suppose that F(x, y, z) is differentiable and that the equation (4) F(x, y, z) = C

defines z implicitly as a (differentiable) function of x and y (i.e., z = f(x, y) and we may assume that x and y are independent variables). Then, with the help of the chain rule, we may differentiate both sides of (4) with respect to x to obtain

(5)
$$\frac{\partial F}{\partial x}\frac{\partial x}{\partial x} + \frac{\partial F}{\partial y}\frac{\partial y}{\partial x} + \frac{\partial F}{\partial z}\frac{\partial z}{\partial x} = 0$$

But $\frac{\partial x}{\partial x} = 1$ and $\frac{\partial y}{\partial x} = 0$ (since *y* does not depend on *x*). Thus (5) reduces to

$$\frac{\partial F}{\partial x}\left(1\right) + \frac{\partial F}{\partial y}\left(0\right) + \frac{\partial F}{\partial z}\frac{\partial z}{\partial x} = 0$$

or

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z}\frac{\partial z}{\partial x} = 0$$

14.5

Rearranging we obtain

$$\frac{\partial z}{\partial x} = \frac{-\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} = \frac{-F_x}{F_z}$$

Remark. Also, see the next example about the use of the phrase "independent variables".

Example 2. Exercise 14.5.51 - Modified

If z = f(x, y) is differentiable, with $x = r^2 + s^2$ and y = 2rs, find $\frac{\partial^2 z}{\partial s \partial r}$. (*Note:* That *r* and *s* are independent variables goes without saying.)

By the Chain Rule we have

(6)
$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial r} = 2r\frac{\partial z}{\partial x} + 2s\frac{\partial z}{\partial y}$$

Before proceeding, we should discuss the right-hand side of (6). Specifically, we should ask ourselves which of the expressions are functions of *s*. By assumption, *r* is not a function of *s*, but $\partial z/\partial x$, $\partial z/\partial y$, and *s* are all (differentiable) functions of *s*.

To make this all readable, we introduce the operator D_s to mean "take the partial with respect to s". We also factor out a 2. Thus

$$D_{s}\left(\frac{1}{2}\frac{\partial z}{\partial r}\right) = D_{s}\left(r\frac{\partial z}{\partial x} + s\frac{\partial z}{\partial y}\right)$$
$$= rD_{s}\left(\frac{\partial z}{\partial x}\right) + D_{s}\left(s\frac{\partial z}{\partial y}\right)$$

product
$$= rD_{s}\left(\frac{\partial z}{\partial x}\right) + D_{s}\left(s\right)\frac{\partial z}{\partial y} + sD_{s}\left(\frac{\partial z}{\partial y}\right)$$

after applying the product rule

and since $D_s(s) = 1$, the last expression reduces to

(7)
$$= rD_s\left(\frac{\partial z}{\partial x}\right) + \frac{\partial z}{\partial y} + sD_s\left(\frac{\partial z}{\partial y}\right)$$

So the question is, how on earth do we calculate

$$D_s\left(\frac{\partial z}{\partial x}\right)$$
 and $D_s\left(\frac{\partial z}{\partial y}\right)$

Perhaps one more notational adjustment might help. Let *G* and *H* denote the $\partial z/\partial x$ and $\partial z/\partial y$, resp. Then *G* is a differentiable function of *x* and *y* and

$$D_{s}\left(\frac{\partial z}{\partial x}\right) = D_{s}\left(G\right) = \frac{\partial G}{\partial s}$$
$$= \frac{\partial G}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial G}{\partial y}\frac{\partial y}{\partial s}$$
$$= \frac{\partial z^{2}}{\partial x^{2}}2s + \frac{\partial z^{2}}{\partial y\partial x}2r$$

and, similarly

$$D_{s}\left(\frac{\partial z}{\partial y}\right) = \frac{\partial H}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial H}{\partial y}\frac{\partial y}{\partial s}$$
$$= \frac{\partial z^{2}}{\partial x \partial y}2s + \frac{\partial z^{2}}{\partial y^{2}}2r$$
$$= \frac{\partial z^{2}}{\partial y \partial x}2s + \frac{\partial z^{2}}{\partial y^{2}}2r$$

Since by the given assumptions from Example 14.5.7, we may conclude that $\frac{\partial z^2}{\partial y \, \partial x} = \frac{\partial z^2}{\partial x \, \partial y}$.

Putting all of this together we have

$$\begin{aligned} \frac{\partial z^2}{\partial s \,\partial r} &= D_s \left(\frac{\partial z}{\partial r} \right) = 2D_s \left(\frac{1}{2} \frac{\partial z}{\partial r} \right) \\ &= 2 \left\{ r D_s \left(\frac{\partial z}{\partial x} \right) + \frac{\partial z}{\partial y} + s D_s \left(\frac{\partial z}{\partial y} \right) \right\} \\ &= 2 \left\{ r \left(\frac{\partial z^2}{\partial x^2} 2s + \frac{\partial z^2}{\partial y \,\partial x} 2r \right) + \frac{\partial z}{\partial y} + s \left(\frac{\partial z^2}{\partial y \,\partial x} 2s + \frac{\partial z^2}{\partial y^2} 2r \right) \right\} \\ &= 2 \frac{\partial z}{\partial y} + 4rs \frac{\partial z^2}{\partial x^2} + 4(r^2 + s^2) \frac{\partial z^2}{\partial y \,\partial x} + 4rs \frac{\partial z^2}{\partial y^2} \end{aligned}$$