14.5 The Chain Rule

Functions of Two or Three Variables

Theorem 1. Chain Rule for Functions of Three Independent Variables

If $w=f(x, y, z)$ is differentiable and x, y and z are differentiable functions of t, then w is a differentiable function of t and
(1)

$$
\frac{d w}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}
$$

Theorem 2. Chain Rule for Functions of Two Independent Variables and Three Intermediate Variables

If $w=f(x, y, z)$ and $x=g(r, s), y=h(r, s)$ and $z=k(r, s)$ are differentiable functions, then w has partial derivatives with respect to r and s and

$$
\begin{align*}
& \frac{\partial w}{\partial r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial r} \tag{2}\\
& \frac{\partial w}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial s}
\end{align*}
$$

Example 1. Application - Implicit Function Theorem

Suppose that $F(x, y, z)$ is differentiable and that the equation

$$
\begin{equation*}
F(x, y, z)=C \tag{4}
\end{equation*}
$$

defines z implicitly as a (differentiable) function of x and y (i.e., $z=f(x, y)$ and we may assume that x and y are independent variables). Then, with the help of the chain rule, we may differentiate both sides of (4) with respect to x to obtain

$$
\begin{equation*}
\frac{\partial F}{\partial x} \frac{\partial x}{\partial x}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0 \tag{5}
\end{equation*}
$$

But $\frac{\partial x}{\partial x}=1$ and $\frac{\partial y}{\partial x}=0$ (since y does not depend on x). Thus (5) reduces to

$$
\frac{\partial F}{\partial x}(1)+\frac{\partial F}{\partial y}(0)+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0
$$

or

$$
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0
$$

Rearranging we obtain

$$
\frac{\partial z}{\partial x}=\frac{-\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}=\frac{-F_{x}}{F_{z}}
$$

Remark. Also, see the next example about the use of the phrase "independent variables".

Example 2. Exercise 14.5.51-Modified

If $z=f(x, y)$ is differentiable, with $x=r^{2}+s^{2}$ and $y=2 r s$, find $\partial^{2} z / \partial s \partial r$. (Note: That r and s are independent variables goes without saying.)

By the Chain Rule we have
(6)

$$
\frac{\partial z}{\partial r}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r}=2 r \frac{\partial z}{\partial x}+2 s \frac{\partial z}{\partial y}
$$

Before proceeding, we should discuss the right-hand side of (6). Specifically, we should ask ourselves which of the expressions are functions of s. By assumption, r is not a function of s, but $\partial z / \partial x$, $\partial z / \partial y$, and s are all (differentiable) functions of s.

To make this all readable, we introduce the operator D_{s} to mean "take the partial with respect to s ". We also factor out a 2 . Thus

$$
\begin{aligned}
D_{s}\left(\frac{1}{2} \frac{\partial z}{\partial r}\right) & =D_{s}\left(r \frac{\partial z}{\partial x}+s \frac{\partial z}{\partial y}\right) \\
& =r D_{s}\left(\frac{\partial z}{\partial x}\right)+D_{s}(\underbrace{\left.s \frac{\partial z}{\partial y}\right)}_{\text {product }} \\
& =r D_{s}\left(\frac{\partial z}{\partial x}\right)+\underbrace{D_{s}(s) \frac{\partial z}{\partial y}+s D_{s}\left(\frac{\partial z}{\partial y}\right)}_{\text {after applying the product rule }}
\end{aligned}
$$

and since $D_{s}(s)=1$, the last expression reduces to

$$
\begin{equation*}
=r D_{s}\left(\frac{\partial z}{\partial x}\right)+\frac{\partial z}{\partial y}+s D_{s}\left(\frac{\partial z}{\partial y}\right) \tag{7}
\end{equation*}
$$

So the question is, how on earth do we calculate

$$
D_{s}\left(\frac{\partial z}{\partial x}\right) \quad \text { and } \quad D_{s}\left(\frac{\partial z}{\partial y}\right)
$$

Perhaps one more notational adjustment might help. Let G and H denote the $\partial z / \partial x$ and $\partial z / \partial y$, resp. Then G is a differentiable function of x and y and

$$
\begin{aligned}
D_{s}\left(\frac{\partial z}{\partial x}\right) & =D_{s}(G)=\frac{\partial G}{\partial s} \\
& =\frac{\partial G}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial G}{\partial y} \frac{\partial y}{\partial s} \\
& =\frac{\partial z^{2}}{\partial x^{2}} 2 s+\frac{\partial z^{2}}{\partial y \partial x} 2 r
\end{aligned}
$$

and, similarly

$$
\begin{aligned}
D_{s}\left(\frac{\partial z}{\partial y}\right) & =\frac{\partial H}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial H}{\partial y} \frac{\partial y}{\partial s} \\
& =\frac{\partial z^{2}}{\partial x \partial y} 2 s+\frac{\partial z^{2}}{\partial y^{2}} 2 r \\
& =\frac{\partial z^{2}}{\partial y \partial x} 2 s+\frac{\partial z^{2}}{\partial y^{2}} 2 r
\end{aligned}
$$

Since by the given assumptions from Example 14.5.7, we may conclude that $\frac{\partial z^{2}}{\partial y \partial x}=\frac{\partial z^{2}}{\partial x \partial y}$.

Putting all of this together we have

$$
\begin{aligned}
\frac{\partial z^{2}}{\partial s \partial r} & =D_{s}\left(\frac{\partial z}{\partial r}\right)=2 D_{s}\left(\frac{1}{2} \frac{\partial z}{\partial r}\right) \\
& =2\left\{r D_{s}\left(\frac{\partial z}{\partial x}\right)+\frac{\partial z}{\partial y}+s D_{s}\left(\frac{\partial z}{\partial y}\right)\right\} \\
& =2\left\{r\left(\frac{\partial z^{2}}{\partial x^{2}} 2 s+\frac{\partial z^{2}}{\partial y \partial x} 2 r\right)+\frac{\partial z}{\partial y}+s\left(\frac{\partial z^{2}}{\partial y \partial x} 2 s+\frac{\partial z^{2}}{\partial y^{2}} 2 r\right)\right\} \\
& =2 \frac{\partial z}{\partial y}+4 r s \frac{\partial z^{2}}{\partial x^{2}}+4\left(r^{2}+s^{2}\right) \frac{\partial z^{2}}{\partial y \partial x}+4 r s \frac{\partial z^{2}}{\partial y^{2}}
\end{aligned}
$$

