14.4 Tangent Planes and Linear Approximations

The Chain Rule

Theorem 1. Chain Rule for Functions of Three Independent Variables

If $w=f(x, y, z)$ is differentiable and x, y and z are differentiable functions of t, then w is a differentiable function of t and

$$
\begin{equation*}
\frac{d w}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} \tag{1}
\end{equation*}
$$

Now let

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

and as usual, let

$$
\mathbf{r}=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

Then (1) can be restated as

$$
\begin{equation*}
\frac{d w}{d t}=\nabla f \cdot \frac{d \mathbf{r}}{d t} \tag{2}
\end{equation*}
$$

Remark. ∇f is called the gradient of f. We will prove this theorem in section 14.5 and we will say more about the gradient in section 14.6.

Tangent Planes and Normal Lines

If $\mathbf{r}=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$ is a smooth curve on the level surface $f(x, y, z)=c$ of a differentiable function f, then $f(x(t), y(t), z(t))$ is a differentiable function of t. Differentiating both sides (with the help of the Chain Rule and (2)) we obtain

$$
\begin{aligned}
\frac{d}{d t} f(x(t), h(t), k(t)) & =\frac{d}{d t} c \\
\Longrightarrow \nabla f \cdot \frac{d \mathbf{r}}{d t} & =0
\end{aligned}
$$

In other words, at every point along the (smooth) curve, ∇f is orthogonal to the curve's velocity vector. This leads to the following.

Definition. Tangent Plane, Normal Line

The tangent plane at $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on the level surface $f(x, y, z)=c$ of a differentiable function f is the plane through P_{0} normal to $\nabla f\left(P_{0}\right)$.

The normal line of the surface at P_{0} is the line through P_{0} parallel to $\nabla f\left(P_{0}\right)$.

It follows from chapter 12 that Tangent Plane to $f(x, y, z)=c$ at $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is given by

$$
\begin{equation*}
f_{x}\left(P_{0}\right)\left(x-x_{0}\right)+f_{y}\left(P_{0}\right)\left(y-y_{0}\right)+f_{z}\left(P_{0}\right)\left(z-z_{0}\right)=0 \tag{3}
\end{equation*}
$$

and the Normal Line to $f(x, y, z)=c$ at $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is given by the parametric equations

$$
\begin{equation*}
x=x_{0}+f_{x}\left(P_{0}\right) t, \quad y=y_{0}+f_{y}\left(P_{0}\right) t, \quad z=z_{0}+f_{z}\left(P_{0}\right) t \tag{4}
\end{equation*}
$$

Example 1. Given the equation of the surface

$$
x^{2}+2 x y-y^{2}+z^{2}=7
$$

and the point $Q_{0}=Q_{0}(1,-1,3)$.
a. Find the equation of the tangent plane at Q_{0} on the given surface.

Let $g(x, y, z)=x^{2}+2 x y-y^{2}+z^{2}-7$. Then

$$
\begin{aligned}
\nabla g & =(2 x+2 y) \mathbf{i}+(2 x-2 y) \mathbf{j}+2 z \mathbf{k} \Longrightarrow \\
\nabla g\left(Q_{0}\right) & =4 \mathbf{j}+6 \mathbf{k}
\end{aligned}
$$

It follows that the equation of the tangent plane is given by

$$
4(y+1)+6(z-3)=0
$$

b. Find the normal line at Q_{0} on the surface.

This is easy.

$$
\begin{aligned}
x & =1 \\
y & =-1+4 t \\
z & =3+6 t
\end{aligned}
$$

Standard Linear Approximation

In section 14.3 we discussed the following (two-dimensional) definition of the "total" derivative.

Definition. Let $f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ and let $\left(x_{0}, y_{0}\right)$ be an interior point of D. Then f is differentiable at $\left(x_{0}, y_{0}\right)$ if there are two numbers $f_{1}\left(x_{0}, y_{0}\right)$ and $f_{2}\left(x_{0}, y_{0}\right)$ such that
(5)

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{f(x, y)-f\left(x_{0}, y_{0}\right)-f_{1}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)-f_{2}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}=0
$$

Later we observed that $f_{1}=f_{x}$ and $f_{2}=f_{y}$. Now let

$$
L(x, y)=f\left(x_{0}, y_{0}\right)+f_{1}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{2}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right),
$$

then (5) says that f is differentiable at $\left(x_{0}, y_{0}\right)$ if there is a linear function $L(x, y)$ such that
(6)

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{f(x, y)-L(x, y)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}}=0
$$

We know from experience that if the limit in (6) exists, then $L(x, y)$ is "close" to $f(x, y)$ whenever (x, y) is close to $\left(x_{0}, y_{0}\right)$. Just as we did in calculus I, we can now define the linearization of a differentiable function f.

Definition. Linearization

Suppose the $f(x, y)$ is a differentiable function. Then the linearization of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ is the function

$$
\begin{equation*}
L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \tag{7}
\end{equation*}
$$

The approximation

$$
\begin{equation*}
f(x, y) \approx L(x, y) \tag{8}
\end{equation*}
$$

is called the standard linear approximation of f at $\left(x_{0}, y_{0}\right)$. It is a good approximation of f for all (x, y) "near" $\left(x_{0}, y_{0}\right)$.

Definition. The Error in the Standard Linear Approximation

The error in the approximation defined in (8) is denoted by $E(x, y)$.
That is,

$$
E(x, y)=f(x, y)-L(x, y)
$$

It turns out that we can find an upper bound for this error.
Suppose that f and its first and second partials are continuous in a region containing a rectangle R centered at $\left(x_{0}, y_{0}\right)$. Suppose also that M is an upper bound on R for $\left|f_{x x}\right|,\left|f_{y y}\right|$, and $\left|f_{x y}\right|$. Then

$$
\begin{equation*}
|E(x, y)| \leq \frac{M}{2}\left(\left|x-x_{0}\right|+\left|y-y_{0}\right|\right)^{2} \tag{9}
\end{equation*}
$$

Example 2. Let $f(x, y)=e^{x} \sin y$.
a. Find the linearization $L(x, y)$ of f at $P_{0}=P_{0}(\ln 2, \pi / 2)$.

$$
\begin{aligned}
& f_{x}=e^{x} \sin y, \Longrightarrow \quad f_{x}(\ln 2, \pi / 2)=2 \\
& f_{y}=e^{x} \cos y, \Longrightarrow \quad f_{y}(\ln 2, \pi / 2)=0
\end{aligned}
$$

so that

$$
\begin{aligned}
L(x, y) & =f(\ln 2, \pi / 2)+f_{x}(\ln 2, \pi / 2)(x-\ln 2)+f_{y}(\ln 2, \pi / 2)(y-\pi / 2) \\
& =2+2(x-\ln 2)
\end{aligned}
$$

b. Find an upper bound for the magnitude $|E|$ of the error in the approximation $f(x, y) \approx L(x, y)$ over the rectangle $R:|x-\ln 2| \leq 0.1,|y-\pi / 2| \leq 0.2$.
The error is bounded by the formula

$$
|E| \leq \frac{M}{2}(|x-\ln 2|+|y-\pi / 2|)^{2}
$$

where M is an upper bound of all of the second order partials of f over the rectangle R. Now,

$$
f_{x x}=e^{x} \sin y \Longrightarrow\left|f_{x x}\right|=\left|e^{x} \sin y\right| \leq e^{x} \leq e^{\ln 2+0.1}, \quad(x, y) \in R
$$

and since

$$
\begin{aligned}
& f_{y y}=-e^{x} \sin y \\
& f_{x y}=f_{y x}=e^{x} \cos y
\end{aligned}
$$

we conclude that $M=e^{\ln 2+0.1}$. Thus

$$
\begin{aligned}
|E| & \leq \frac{e^{\ln 2+0.1}}{2}(0.1+0.2)^{2} \\
& =\frac{e^{\ln 2+0.1}}{2}(0.09) \\
& \leq \frac{2.4}{2}(0.09)=0.108
\end{aligned}
$$

c. Use the linearization of $f(x, y)$ from part (a) to estimate $f(0.75,1.5)$. We have

$$
\begin{aligned}
f(0.75,1.5) & \approx L(0.75,1.5) \\
& =2+2(0.75-\ln 2) \\
& \approx 2+2(0.75-0.693) \\
& \approx 2.114
\end{aligned}
$$

According to MMA $f(0.75,1.5) \approx 2.1117 \pm 0.0001$.

Differentials and the Derivative

Let $y=f(x)$ be a function and let Δx represent the change in x. Then the corresponding change in y is given by

$$
\Delta y=f(x+\Delta x)-f(x)
$$

In a first semester calculus class we saw that if f was differentiable at a then

$$
\Delta y=\Delta f=f^{\prime}(a) \Delta x+\varepsilon \Delta x, \quad \text { where } \varepsilon \longrightarrow 0 \text { as } \Delta x \longrightarrow 0
$$

Now suppose that $z=f(x, y)$ and suppose that x changes from x_{0} to $x_{0}+\Delta x$ and y changes from y_{0} to $y_{0}+\Delta y$. Then the corresponding change in z is

$$
\Delta z=f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)
$$

This leads to the following definition.
Definition. If $z=f(x, y)$, then f is differentiable at $\left(x_{0}, y_{0}\right)$ if Δz can be expressed in the form

$$
\begin{equation*}
\Delta z=f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y \tag{10}
\end{equation*}
$$

where $\varepsilon_{1} \longrightarrow 0$ and $\varepsilon_{2} \longrightarrow 0$ as $(\Delta x, \Delta y) \longrightarrow(0,0)$.
In other words, f is differentiable at $\left(x_{0}, y_{0}\right)$ if the standard linearization is a good approximation of f "near" $\left(x_{0}, y_{0}\right)$.

We recall the differential from first semester calculus. Let $y=f(x)$ be differentiable. Then the differential of y (or of f) is given by

$$
\begin{equation*}
d y=f^{\prime}(x) d x \tag{11}
\end{equation*}
$$

The sketch below is helpful.

As we saw with the standard linear approximation,

$$
\Delta y \approx d y
$$

provided $d x=\Delta x$ is small.

Now suppose that $z=f(x, y)$ and let $d x$ and $d y$ be independent variables. We define the differential $d z$ by

$$
\begin{equation*}
d z=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y \tag{12}
\end{equation*}
$$

Observe that (8) can now be rewritten as

$$
f(x, y) \approx f\left(x_{0}, y_{0}\right)+d z
$$

Example 3. The height and diameter of a tin can is 6 in and 4 in respectively. Use differentials to estimate the amount tin in the can if the tin is $1 / 16$ of an inch thick?

Solution:

Recall that the volume of a cylinder is given by the formula $V=\pi r^{2} h$. Now

$$
\begin{aligned}
d V & =V_{r} d r+V_{h} d h \\
& =2 \pi r h d r+\pi r^{2} d h
\end{aligned}
$$

Since $d r=1 / 16$ and $d h=1 / 16+1 / 16$ (top and bottom), it follows that

$$
\begin{aligned}
d V & =V_{r}(2,6) \frac{1}{16}+V_{h}(2,6) \frac{2}{16} \\
& =\frac{2 \pi(2)(6)}{16}+\frac{8 \pi}{16} \\
& =2 \pi \approx 6.28318 \mathrm{in}^{3}
\end{aligned}
$$

Remark. It's not unreasonable to wonder what's the big deal. After all we can simply carry out the following calculation.

$$
\begin{aligned}
\Delta V & =V(r+d r, h+d h)-V(r, h) \\
& =\pi\left\{(r+d r)^{2}(h+d h)-r^{2} h\right\} \\
& =\pi\left\{r^{2} h+r^{2} d h+2 r h d r+2 r d r d h+d r^{2} h+d r^{2} d h-r^{2} h\right\} \\
& =\underbrace{\pi\left(r^{2} d h+2 r h d r\right)}_{d V}+\pi\left(2 r d r d h+d r^{2} h+d r^{2} d h\right)
\end{aligned}
$$

And once again $d r=1 / 16$ and $d h=2 / 16$. Thus

$$
\begin{aligned}
\Delta V & =2 \pi+\pi\left(\frac{8}{16^{2}}+\frac{6}{16^{2}}+\frac{2}{16^{3}}\right) \\
& \approx 6.28318+0.173340 \approx 6.456525
\end{aligned}
$$

However, the first calculation is much easier.

Example 4. Let $f(x, y)=3 x^{2} y-x^{3} \sqrt{y}$.
a. Find the equation of the plane tangent to the surface $z=f(x, y)$ at $P=P(2,4)$.

Now let $g(x, y, z)=f(x, y)-z$. Then the question can be thought of as finding plane tangent to the level surface $g(x, y, z)=0$ at the point

$$
Q=Q(2,4, f(2,4))=Q(2,4,32) .
$$

Now we may proceed as we did in Example 1.

$$
\begin{aligned}
\nabla g & =g_{x} \mathbf{i}+g_{y} \mathbf{j}+g_{z} \mathbf{k} \\
& =\left(6 x y-3 x^{2} \sqrt{y}\right) \mathbf{i}+\left(3 x^{2}-\frac{x^{3}}{2 \sqrt{y}}\right) \mathbf{j}-\mathbf{k}
\end{aligned}
$$

and

$$
\nabla g(Q)=24 \mathbf{i}+10 \mathbf{j}-\mathbf{k}
$$

As we saw on page 2, this vector is normal to the plane tangent to the surface $z=f(x, y)$ at Q. It follows that the equation of the plane is

$$
\begin{equation*}
24(x-2)+10(y-4)-1(z-32)=0 \tag{13}
\end{equation*}
$$

b. Find the linearization of $f(x, y)$ at P.

We could simply follow the recipe given by (7). However, it is easy to see that this is equivalent to solving equation 13 for z. That is,

$$
\begin{aligned}
z & =32+24(x-2)+10(y-4) \\
& =f(P)+f_{x}(P)(x-2)+f_{y}(P)(y-4) \\
& =L(x, y)
\end{aligned}
$$

Example 5. The velocity v of a falling object in the absence of wind resistance is given by $v=\sqrt{2 h g}$. If the height h is measured with a relative error of 3% and we use $10 \mathrm{~m} / \mathrm{s}$ for the acceleration due gravity g (instead of 9.81), use differentials to estimate the maximum relative error when measuring v ?

So $d g / g=0.19 / 9.81 \approx 0.19 / 10$ and

$$
d v=\sqrt{2}\left(\frac{g d h}{2 \sqrt{h g}}+\frac{h d g}{2 \sqrt{h g}}\right)
$$

It follows that

$$
\begin{aligned}
\frac{d v}{v} & =\sqrt{2}\left(\frac{g d h}{2 \sqrt{h g}} \frac{1}{\sqrt{2 h g}}+\frac{h d g}{2 \sqrt{h g}} \frac{1}{\sqrt{2 h g}}\right) \\
& =\frac{1}{2}\left(\frac{d h}{h}+\frac{d g}{g}\right) \\
& =\frac{0.03+0.019}{2}
\end{aligned}
$$

Example 6. Consider the density formula $\rho=m / v$. If an object has a mass m which is measured with a relative error of 2% and a volume v which is measured with a relative error of 5%, find an upper bound of the relative error of the density ρ.

$$
d \rho=\frac{d m}{v}-\frac{m d v}{v^{2}}
$$

so that

$$
\begin{aligned}
\frac{d \rho}{\rho} & =\frac{d m}{v} \frac{v}{m}-\frac{m d v}{v^{2}} \frac{v}{m} \\
& =\frac{d m}{m}-\frac{d v}{v}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left|\frac{d \rho}{\rho}\right| & =\left|\frac{d m}{m}-\frac{d v}{v}\right| \\
& \leq\left|\frac{d m}{m}\right|+\left|\frac{d v}{v}\right| \\
& =0.02+0.05
\end{aligned}
$$

Why were absolute value signs omitted in Example 5?

Remark. Recall that the triangle inequality states that if a and b are real numbers, then

$$
|a+b| \leq|a|+|b|
$$

Notice that we used the triangle inequality in the penultimate step above.

