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13.1 Vector Functions and Space Curves

If a particle is moving through space during a given time interval, say

t ∈ I = [t0, t1], then the position of the particle at time t ∈ I is

P = P (x, y, z)

= P (f (t), g(t), h(t))

That is,

x = f (t), y = g(t), z = h(t), t ∈ I(1)

Then for each t ∈ I, the points make up the curve in space called the

particle’s path. The equations in (1) parameterize the curve.

The vector

r(t) = f (t) i + g(t) j + h(t)k(2)

is a position vector of the particle at time t. And the functions

f, g, and h are the component functions of r.

We often refer to the function in (2) as (an example of) a vector-valued

function. On the other hand, the component functions are examples of

scalar-valued functions.
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Example 1. A Space Curve
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We often like to think of r(t) as the position vector of a particle P ,

traveling along the curve, at time t.
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Example 2. At which point(s) does the space curve

r(t) = 2t i− (t + t2)k intersect the paraboloid z = x2 + 4y2?

Solution:

It might be easier to attack this problem by rewriting the

space curve in parametric form. That is,

(3) x(t) = 2t, y(t) = 0, z(t) = −t− t2

It is then a bit easier to see that the curve will intersect the

surface precisely when P = P (x(t), y(t), z(t)) satisfies the

equation z = x2 + 4y2. That is, when

z(t) = x(t)2 + 4y(t)2

So we must solve

−t− t2 = 4t2 + 0

Rearranging, we obtain

0 = t(5t + 1)

It follows that the curve intersects the surface at t = 0,−1/5.

From (3) we conclude that points of intersection are (0, 0, 0)

and (−2/5, 0, 4/25).
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Example 3. Find the parametric equations for the curve that

represents the intersection of the surfaces below.

1 =
x2

4
+

y2

9
(4)

z = 3− 2x(5)

Solution:

This one’s a bit tricky if you forget to parameterize the elliptic

cylinder. A (more or less) standard parameterization of (4) is

given by

x(t) = 2 cos t(6)

y(t) = 3 sin t

Now (5) and (6) imply that

z(t) = 3− 2x(t)

= 3− 4 cos t

See the blue curve in Figure 1 below.
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Figure 1: Intersection of Two Surfaces

The above figure requires some explanation. The blue curve is the

intersection of the two surfaces. The red curve is the intersection of the

elliptical cylinder 36 = 9x2 + 4y2 with the xy-plane. The tilted gray ellipse

includes all the points in the plane z = 3− 2x such that 9x2 + 4y2 < 1.

The paraboloid is not shown.



13.1 6

Limits and Continuity

We define the limit of a vector-valued function component-wise. That is

Definition. The Limit of a Vector-Valued Function

Let r(t) = f (t) i + g(t) j + h(t)k be a vector function and L be a vector.

We say that r has a limit L as t approaches t0 if for every ǫ > 0 there is

a δ = δ(ǫ) > 0 such that

(7) |r(t)− L| < ǫ whenever 0 < |t− t0| < δ

In this case we write

(8) lim
t→t0

r(t) = L

Fortunately, we have the following

Proposition 1. Let L = L1 i + L2 j + L3 k. Then (8) holds whenever

lim
t→t0

f (t) = L1, lim
t→t0

g(t) = L2, lim
t→t0

h(t) = L3

In this case, we write

(9) lim
t→t0

r(t) =

(

lim
t→t0

f (t)

)

i +

(

lim
t→t0

g(t)

)

j +

(

lim
t→t0

h(t)

)

k
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Finally, we have

Definition. Continuity at a Point

A vector-valued function r(t) is continuous at t = t0 if

(10) lim
t→t0

r(t) = r (t0)

The function is called continuous if (10) at every point in its domain.

Remark. By Proposition 1, a vector-valued function is continuous at

t = t0 if and only if each of its component functions are.

Example 4. Limits and Continuity of a Space Curve

Let r(t) = cos t i− 3t2 j +
1

sin t
k.

Then r(t) is continuous everywhere in its domain since each of its

component functions are. What is its domain?


