13.1 Vector Functions and Space Curves

If a particle is moving through space during a given time interval, say $t \in I=\left[t_{0}, t_{1}\right]$, then the position of the particle at time $t \in I$ is

$$
\begin{aligned}
P & =P(x, y, z) \\
& =P(f(t), g(t), h(t))
\end{aligned}
$$

That is,

$$
\begin{equation*}
x=f(t), \quad y=g(t), \quad z=h(t), \quad t \in I \tag{1}
\end{equation*}
$$

Then for each $t \in I$, the points make up the curve in space called the particle's path. The equations in (1) parameterize the curve.

The vector

$$
\begin{equation*}
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k} \tag{2}
\end{equation*}
$$

is a position vector of the particle at time t. And the functions f, g, and h are the component functions of \mathbf{r}.

We often refer to the function in (2) as (an example of) a vector-valued function. On the other hand, the component functions are examples of scalar-valued functions.

Example 1. A Space Curve

We often like to think of $\mathbf{r}(t)$ as the position vector of a particle P, traveling along the curve, at time t.

Example 2. At which point(s) does the space curve $\mathbf{r}(t)=2 t \mathbf{i}-\left(t+t^{2}\right) \mathbf{k}$ intersect the paraboloid $z=x^{2}+4 y^{2}$?

Solution:

It might be easier to attack this problem by rewriting the space curve in parametric form. That is,

$$
\begin{equation*}
x(t)=2 t, y(t)=0, z(t)=-t-t^{2} \tag{3}
\end{equation*}
$$

It is then a bit easier to see that the curve will intersect the surface precisely when $P=P(x(t), y(t), z(t))$ satisfies the equation $z=x^{2}+4 y^{2}$. That is, when

$$
z(t)=x(t)^{2}+4 y(t)^{2}
$$

So we must solve

$$
-t-t^{2}=4 t^{2}+0
$$

Rearranging, we obtain

$$
0=t(5 t+1)
$$

It follows that the curve intersects the surface at $t=0,-1 / 5$. From (3) we conclude that points of intersection are ($0,0,0$) and ($-2 / 5,0,4 / 25$).

Example 3. Find the parametric equations for the curve that represents the intersection of the surfaces below.
(4)

$$
1=\frac{x^{2}}{4}+\frac{y^{2}}{9}
$$

(5)

$$
z=3-2 x
$$

Solution:

This one's a bit tricky if you forget to parameterize the elliptic cylinder. A (more or less) standard parameterization of (4) is given by
(6)

$$
\begin{aligned}
& x(t)=2 \cos t \\
& y(t)=3 \sin t
\end{aligned}
$$

Now (5) and (6) imply that

$$
\begin{aligned}
z(t) & =3-2 x(t) \\
& =3-4 \cos t
\end{aligned}
$$

See the blue curve in Figure 1 below.

Figure 1: Intersection of Two Surfaces

The above figure requires some explanation. The blue curve is the intersection of the two surfaces. The red curve is the intersection of the elliptical cylinder $36=9 x^{2}+4 y^{2}$ with the $x y$-plane. The tilted gray ellipse includes all the points in the plane $z=3-2 x$ such that $9 x^{2}+4 y^{2}<1$. The paraboloid is not shown.

Limits and Continuity

We define the limit of a vector-valued function component-wise. That is Definition. The Limit of a Vector-Valued Function

Let $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$ be a vector function and \mathbf{L} be a vector. We say that \mathbf{r} has a limit \mathbf{L} as t approaches t_{0} if for every $\epsilon>0$ there is a $\delta=\delta(\epsilon)>0$ such that

$$
\begin{equation*}
|\mathbf{r}(t)-\mathbf{L}|<\epsilon \text { whenever } 0<\left|t-t_{0}\right|<\delta \tag{7}
\end{equation*}
$$

In this case we write

$$
\begin{equation*}
\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\mathbf{L} \tag{8}
\end{equation*}
$$

Fortunately, we have the following
Proposition 1. Let $\mathbf{L}=L_{1} \mathbf{i}+L_{2} \mathbf{j}+L_{3} \mathbf{k}$. Then (8) holds whenever

$$
\lim _{t \rightarrow t_{0}} f(t)=L_{1}, \quad \lim _{t \rightarrow t_{0}} g(t)=L_{2}, \quad \lim _{t \rightarrow t_{0}} h(t)=L_{3}
$$

In this case, we write
(9)

$$
\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\left(\lim _{t \rightarrow t_{0}} f(t)\right) \mathbf{i}+\left(\lim _{t \rightarrow t_{0}} g(t)\right) \mathbf{j}+\left(\lim _{t \rightarrow t_{0}} h(t)\right) \mathbf{k}
$$

Finally, we have

Definition. Continuity at a Point

A vector-valued function $\mathbf{r}(t)$ is continuous at $t=t_{0}$ if

$$
\begin{equation*}
\lim _{t \rightarrow t_{0}} \mathbf{r}(t)=\mathbf{r}\left(t_{0}\right) \tag{10}
\end{equation*}
$$

The function is called continuous if (10) at every point in its domain.
Remark. By Proposition 1, a vector-valued function is continuous at $t=t_{0}$ if and only if each of its component functions are.

Example 4. Limits and Continuity of a Space Curve
Let $\mathbf{r}(t)=\cos t \mathbf{i}-3 t^{2} \mathbf{j}+\frac{1}{\sin t} \mathbf{k}$.
Then $\mathbf{r}(t)$ is continuous everywhere in its domain since each of its component functions are. What is its domain?

