13.1 Vector Functions and Space Curves

If a particle is moving through space during a given time interval, say $t \in I = [t_0, t_1]$, then the position of the particle at time $t \in I$ is

$$\begin{split} P &= P(x,y,z) \\ &= P(f(t),g(t),h(t)) \end{split}$$

That is,

(1)
$$x = f(t), y = g(t), z = h(t), t \in I$$

Then for each $t \in I$, the points make up the **curve** in space called the particle's **path**. The equations in (1) **parameterize** the curve.

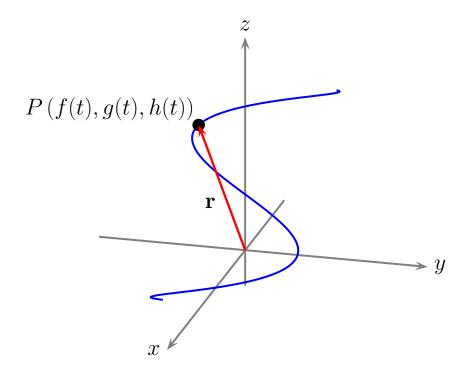
The vector

(2)
$$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

is a **position** vector of the particle at time *t*. And the functions f, g, and h are the **component functions** of **r**.

We often refer to the function in (2) as (an example of) a **vector-valued** function. On the other hand, the component functions are examples of **scalar-valued** functions.

13.1



We often like to think of $\mathbf{r}(t)$ as the *position vector* of a particle P, traveling along the curve, at time t.

Example 2. At which point(s) does the space curve $\mathbf{r}(t) = 2t \mathbf{i} - (t + t^2) \mathbf{k}$ intersect the paraboloid $z = x^2 + 4y^2$?

Solution:

It might be easier to attack this problem by rewriting the space curve in parametric form. That is,

(3)
$$x(t) = 2t, y(t) = 0, z(t) = -t - t^2$$

It is then a bit easier to see that the curve will intersect the surface precisely when P = P(x(t), y(t), z(t)) satisfies the equation $z = x^2 + 4y^2$. That is, when

$$z(t) = x(t)^2 + 4y(t)^2$$

So we must solve

$$-t - t^2 = 4t^2 + 0$$

Rearranging, we obtain

$$0 = t(5t+1)$$

It follows that the curve intersects the surface at t = 0, -1/5. From (3) we conclude that points of intersection are (0, 0, 0) and (-2/5, 0, 4/25). **Example 3.** Find the parametric equations for the curve that represents the intersection of the surfaces below.

(4)
$$1 = \frac{x^2}{4} + \frac{y^2}{9}$$

(5)
$$z = 3 - 2x$$

Solution:

This one's a bit tricky if you forget to parameterize the elliptic cylinder. A (more or less) standard parameterization of (4) is given by

(6) $x(t) = 2\cos t$ $y(t) = 3\sin t$

Now (5) and (6) imply that

$$z(t) = 3 - 2x(t)$$
$$= 3 - 4\cos t$$

See the blue curve in Figure 1 below.

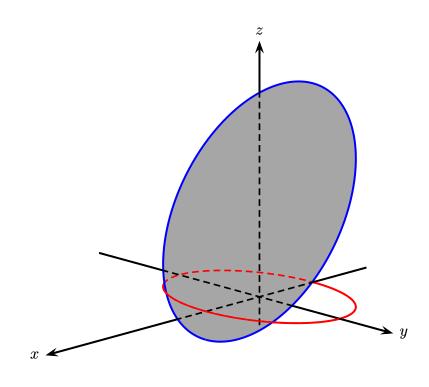


Figure 1: Intersection of Two Surfaces

The above figure requires some explanation. The blue curve is the intersection of the two surfaces. The red curve is the intersection of the elliptical cylinder $36 = 9x^2 + 4y^2$ with the *xy*-plane. The tilted gray ellipse includes all the points in the plane z = 3 - 2x such that $9x^2 + 4y^2 < 1$. The paraboloid is not shown.

Limits and Continuity

We define the limit of a vector-valued function component-wise. That is

Definition. The Limit of a Vector-Valued Function

Let $\mathbf{r}(t) = f(t) \mathbf{i} + g(t) \mathbf{j} + h(t) \mathbf{k}$ be a vector function and \mathbf{L} be a vector. We say that \mathbf{r} has a limit \mathbf{L} as t approaches t_0 if for every $\epsilon > 0$ there is a $\delta = \delta(\epsilon) > 0$ such that

(7)
$$|\mathbf{r}(t) - \mathbf{L}| < \epsilon$$
 whenever $0 < |t - t_0| < \delta$

In this case we write

(8)
$$\lim_{t \to t_0} \mathbf{r}(t) = \mathbf{L}$$

Fortunately, we have the following

Proposition 1. Let $\mathbf{L} = L_1 \mathbf{i} + L_2 \mathbf{j} + L_3 \mathbf{k}$. Then (8) holds whenever

$$\lim_{t \to t_0} f(t) = L_1, \quad \lim_{t \to t_0} g(t) = L_2, \quad \lim_{t \to t_0} h(t) = L_3$$

In this case, we write

(9)
$$\lim_{t \to t_0} \mathbf{r}(t) = \left(\lim_{t \to t_0} f(t)\right) \mathbf{i} + \left(\lim_{t \to t_0} g(t)\right) \mathbf{j} + \left(\lim_{t \to t_0} h(t)\right) \mathbf{k}$$

13.1

Finally, we have

Definition. Continuity at a Point

A vector-valued function $\mathbf{r}(t)$ is **continuous** at $t = t_0$ if

(10)
$$\lim_{t \to t_0} \mathbf{r}(t) = \mathbf{r}(t_0)$$

The function is called continuous if (10) at every point in its domain.

Remark. By Proposition 1, a vector-valued function is continuous at $t = t_0$ if and only if each of its component functions are.

Example 4. Limits and Continuity of a Space Curve

Let
$$\mathbf{r}(t) = \cos t \, \mathbf{i} - 3t^2 \, \mathbf{j} + \frac{1}{\sin t} \, \mathbf{k}.$$

Then $\mathbf{r}(t)$ is continuous everywhere in its domain since each of its component functions are. What is its domain?