### 12.6 Cylinders and Quadric Surfaces

## Cylinders

Definition. A cylinder is a surface that is generated by moving a straight line along a given planar curve while holding the line parallel to a fixed line. The curve is called a generating curve.
Remark. If the generating curve is a circle then the cylinder is a so-called circular cylinder from classical geometry. Note: the generating curve is not unique.

## Example 1. The Parabolic Cylinder $z=y^{2}$

Since the $x$-coordinate is missing we guess that the generating curve lies in the $y z$-plane.



Here is a suggested method for sketching by hand.





## Quadric Surfaces

Definition. A quadric surface is the graph in space of a second-degree equation in $x, y$, and $z$. The most general form is

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+G x+H y+J z+K=0
$$

where $A, B, C, \ldots$ are constants.

We've already seen two examples of quadric surfaces! We discuss several others.

Recall that the graph of the equation below is called an ellipse (centered at the origin). The graph intersects the coordinate axes at $( \pm a, 0)$ and $(0, \pm b)$.

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$



The three dimensional analogue of the example above is called an ellipsoid.

## Example 2. Ellipsoids

Sketch the graph of the equation below.


$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

## Paraboloids

Example 3. A Circular Paraboloid


$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z}{c}
$$

## Cones

## Example 4. Elliptical Cone



The general equation for these surfaces is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}
$$



## Spheres



As we saw in section 12.1, the equation of a sphere with radius $r$ centered at the origin is

$$
x^{2}+y^{2}+z^{2}=r^{2}
$$

## Hyperboloids

A hyperbolic paraboloid is given by the equation
(1)

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{z}{c}, c>0
$$

A prominent feature of these objects is a so-called saddle point which we will discuss in greater detail in chapter 14.

## Example 5. A Saddle Point

The following two sketches show different views of the graph of equation (1).


Now we consider planes parallel to each of the standard planes. In all cases, let $k$ be a real constant.

1. The planes $y=k$. Then equation (1) yields.

$$
\begin{aligned}
\frac{z}{c} & =\frac{x^{2}}{a^{2}}-\frac{k^{2}}{b^{2}} \\
\Longrightarrow z & =A x^{2}-B
\end{aligned}
$$

where $A$ is a positive constant and $B$ is a nonnegative constant (since $k$ could be 0 ). Notice how the parabolas (shown in red above and below) straddle the parabola $z=\frac{-c}{b^{2}} y^{2}$ (shown in blue).

2. Now consider planes parallel to the $y z$-plane, that is, $x=k$. Then equation (1) yields.

$$
\begin{aligned}
\frac{z}{c} & =-\frac{y^{2}}{b^{2}}+\frac{k^{2}}{a^{2}} \\
\Longrightarrow z & =-C y^{2}+D
\end{aligned}
$$

where $C$ is a positive constant and $D$ is a nonnegative constant (again, since $k$ could be 0 ). Notice how the parabolas (shown in blue above and below) straddle the parabola $z=\frac{c}{a^{2}} x^{2}$ (shown in red).

3. Finally, consider planes parallel to the $x y$-plane. That is, $z=k$. Then equation (1) yields.

$$
\begin{aligned}
\frac{k}{c} & =\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} \\
\Longrightarrow K & =\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}
\end{aligned}
$$

where $K$ is a nonnegative constant. If $K=0$ then we generate the big X as shown in class. Otherwise, we get hyperbolas as shown below.

For example, the intersection of the hyperbolic paraboloid with the plane $z=k>0$ yields hyperbolas that open along the $x$-axis.


## Example 6. Hyperboloids

The hyperboloid of one sheet is

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

See the text.

