# **12.5 Lines and Planes in Space**

We know from elementary geometry that (at least in the plane and in space) that two distinct points completely determine a line. In the plane, a line is also completely determined by one point and a direction (also called the *slope*). In this class we can use (unit) vectors to specify a direction.

## The Vector Equation of a Line

Now consider the following problem. Find an equation of the line passing through the point  $P_0 = P_0(x_0, y_0, z_0)$  in the direction of the vector **v**.



Now if *P* is any other point on the line, *L*, then  $\overline{P_0P}$  must be parallel to the vector v. In other words,

(1) 
$$\overline{P_0P} = t \mathbf{v}, \quad t \in \mathbb{R}$$

*Remark.* Are there any other methods for determining if two nonzero vectors are parallel?

Now suppose that  $P_0 = P_0(x_0, y_0, z_0)$  and  $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$ . Then equation (1) implies that P = P(x, y, z) lies on the line if

(2) 
$$(x - x_0)\mathbf{i} + (y - y_0)\mathbf{j} + (z - z_0)\mathbf{k} = t(v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k})$$

or

(3) 
$$x \mathbf{i} + y \mathbf{j} + z \mathbf{k} = x_0 \mathbf{i} + y_0 \mathbf{j} + z_0 \mathbf{k} + t (v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k})$$

Now let  $\mathbf{r}(t)$  be the position vector of a point P(x, y, z) on the line (see sketch) and  $\mathbf{r}_0$  be the position vector of the point  $P_0$ , then the vector equation of the line *L* through  $P_0$  parallel to  $\mathbf{v}$  is given by

(4) 
$$\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}, \quad -\infty < t < \infty$$



Recall that two vectors are equal if they have the same components. Now we can rewrite (4) in a more useful form.

#### Definition. Parametric Equations for a Line

The standard parametrization of the line through  $P_0(x_0, y_0, z_0)$  parallel to  $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$  is

(5) 
$$x = x_0 + v_1 t, \ y = y_0 + v_2 t, \ z = z_0 + v_3 t, \ -\infty < t < \infty$$

**Example 1.** Find the parametric equations of the line through the points P(-2, 1, 3) and Q(-1, 4, 5). Here we are not given the vector  $\mathbf{v}$  but one can easily be found. If we let  $P_0 = Q$  and  $\mathbf{v} = \overline{PQ}$  then

$$\mathbf{v} = (-1 - (-2))\mathbf{i} + (4 - 1)\mathbf{j} + (5 - 3)\mathbf{k}$$
  
=  $\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ 

and equation 5 implies

$$x = -1 + t$$
,  $y = 4 + 3t$ ,  $z = 5 + 2t$ 

*Remark.* Although choosing  $P_0 = P$  results in a different parametrization it still produces the same line. *How can you verify this?* 

The following technique will be very useful in some of the later sections.

**Example 2.** Find the parametric equations for the **line segment** joining the points P(1, -1, 4) and Q(-3, 2-3) (c.f., page 843 of the text).

Let *a* and *b* be real numbers. Notice that for  $0 \le t \le 1$  the function f(t) = at + (1 - t)b gives all real numbers between *a* and *b* and f(0) = b and f(1) = a. Applying this idea for the *x*, *y*, and *z* coordinates, we find that the line segment from *P* to *Q* is given by

$$\begin{aligned} x &= -3t + (1-t)1 \\ y &= 2t + (1-t)(-1) \\ z &= -3t + (1-t)4, \ 0 \leq t \leq 1 \end{aligned}$$

Notice that this parametrization gives P when t = 0 and gives Q when t = 1. Notice that this method is quick and completely consistent with equation 5. What happens if we drop the restriction on t?

The Distance from a Point to a Line in Space

There are at least four different methods for finding this distance from a point to a line (including the one given by the text). We'll use the one suggested by the sketch below.



Let *L* be a line and *Q* be a point not on *L*. From elementary geometry, the distance *d* from *Q* to *L* is shown in the sketch. Now by the Pythagorean Theorem

$$d^2 + \|\operatorname{proj}_{\vec{v}} \overline{PQ}\|^2 = \|\overline{PQ}\|^2$$

or

$$d = \sqrt{\|\overline{PQ}\|^2 - \|\operatorname{proj}_{\vec{v}} \overline{PQ}\|^2}$$

#### The Equation of a Plane in Space



Let *T* be a plane in space and let  $P_0 = P_0(x_0, y_0, z_0) \in T$ . Also let  $\mathbf{n} = A \mathbf{i} + B \mathbf{j} + C \mathbf{k}$  be a vector normal to *T*. If  $P = P(x, y, z) \in T$ , then  $\mathbf{n} \cdot \overline{P_0 P} = 0$ . In other words,

$$\{A\mathbf{i} + B\mathbf{j} + C\mathbf{k}\} \cdot \{(x - x_0)\mathbf{i} + (y - y_0)\mathbf{j} + (z - z_0)\mathbf{k}\} = 0$$

or

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

It follows that the equation of a plane containing  $P_0 = P_0(x_0, y_0, z_0)$ normal to  $\mathbf{n} = A \mathbf{i} + B \mathbf{j} + C \mathbf{k}$  is given by

(6) 
$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

## Remark. Equation 6 is often rewritten as

$$Ax + By + Cz = D$$

where  $D = Ax_0 + By_0 + Cz_0$ .

### **Lines of Intersection**

If two nonparallel planes intersect the there intersection is a line. There is an easy way to find the (parametric) equations of this line. We proceed with an example.

#### Example 3. The Line of Intersection of Two Planes

Find the parametric equations for the line in which the planes  $T_1: 2x - 4y + 3z = 12$  and  $T_2: 3x + 3y - 2z = 6$  intersect.

There are some fancy techniques from calculus 3 that we might try, but a more straight-forward approach is to simply solve the  $(2 \times 3)$  system. Let's *eliminate* z.

$$2T_1: 4x - 8y + 6z = 24$$
$$3T_2: 9x + 9y - 6z = 18$$

Adding left and right-hand sides respectively yields

$$13x + y = 42$$

Now, let x = t. Then

$$y = 42 - 13x = 42 - 13t$$

Finally, using either  $T_1$  or  $T_2$ , we find z in terms of t to obtain

$$z = 60 - 18t$$

It follows that the parametric equations for the line of intersection are given by

$$x = t, y = 42 - 13t, z = 60 - 18t, -\infty < t < \infty$$



**Example 4.** Let *T* be the plane 2x + 5y + z = 2 and Q = Q(1, -1, 3). Notice that  $Q \notin T$ . Find the distance between the point *Q* and the plane *T*.

The sketch is very suggestive. If we can find a point P in the plane T, then it appears that the distance from Q to T is the magnitude of the projection of  $\overrightarrow{PQ}$  onto  $\mathbf{n}$ . Let P = P(-1, 0, 4). It is easy to see that  $P \in T$ . Now let  $\mathbf{u} = \overrightarrow{PQ} = 2\mathbf{i} - \mathbf{j} - \mathbf{k}$ . Since  $\mathbf{n} = 2\mathbf{i} + 5\mathbf{j} + \mathbf{k}$ , we have

$$\|\operatorname{proj}_{\mathbf{n}} \mathbf{u}\| = \frac{|\mathbf{u} \cdot \mathbf{n}|}{\|\mathbf{n}\|}$$
  
=  $\frac{|4 - 5 - 1|}{\sqrt{2^2 + 5^2 + 1^2}} = \frac{2}{\sqrt{30}}$ 

### **Angle Between Planes**

See the text. Note: By definition, the angle between two planes is acute, hence the formula given in the text (example 7) is wrong. It should be...

(7) 
$$\theta = \cos^{-1} \left( \frac{|\mathbf{n}_1 \cdot \mathbf{n}_2|}{\|\mathbf{n}_1\| \|\mathbf{n}_2\|} \right)$$

**Example 5.** Find the angle between the planes from Example 3.

Let  $\mathbf{n}_1 = 2\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}$  and  $\mathbf{n}_2 = 3\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$  be the normal vectors the planes  $T_1$  and  $T_2$ , respectively. Then the cosine of the angle between planes  $T_1$  and  $T_2$  is

$$\cos \theta = \frac{|\mathbf{n}_1 \cdot \mathbf{n}_2|}{\|\mathbf{n}_1\| \|\mathbf{n}_2\|}$$
$$= \frac{|-12|}{\sqrt{29}\sqrt{22}}$$
$$= \frac{12}{\sqrt{29}\sqrt{22}}$$

It follows that

$$\theta = \cos^{-1}\left(\frac{12}{\sqrt{29}\sqrt{22}}\right)$$

 $\thickapprox 1.075736212$