12.4 Cross Products

Suppose that A and B are non-zero and non-parallel vectors in \mathbb{R}^{3}. Then the vectors determine a plane. Let θ be the angle from \mathbf{A} to \mathbf{B}.
Let n be a unit vector whose direction is orthogonal to the plane determined by A and B according to the right-hand rule. We define a new vector, $\mathbf{A} \times \mathbf{B}$ (\mathbf{A} cross \mathbf{B}) to be a vector in the direction of \mathbf{n} and whose magnitude is given by

$$
\begin{equation*}
\mathbf{A} \times \mathbf{B}=(\|\mathbf{A}\|\|\mathbf{B}\| \sin \theta) \mathbf{n} \tag{1}
\end{equation*}
$$

Notice that we have the following equivalence.
(2) Nonzero vectors A and B are parallel $\Longleftrightarrow \mathrm{A} \times \mathrm{B}=\mathbf{0}$ and that

$$
\begin{equation*}
\mathbf{B} \times \mathbf{A}=-(\mathbf{A} \times \mathbf{B}) \tag{3}
\end{equation*}
$$

(See the sketch below.)

Example 1. Cross products with the standard unit vectors.

(4)

$$
\mathbf{i} \times \mathbf{j}=\mathrm{k}
$$

(5)
$\mathbf{j} \times \mathbf{k}=\mathbf{i}$
(6)

$$
\mathbf{k} \times \mathbf{i}=\mathbf{j}
$$

Since n is a unit vector, the magnitude of $\mathrm{A} \times \mathrm{B}$ is

$$
\begin{aligned}
\|\mathbf{A} \times \mathbf{B}\| & =\|\mathbf{A}\|\|\mathbf{B}\||\sin \theta|\|\mathbf{n}\| \\
& =\|\mathbf{A}\|\|\mathbf{B}\| \sin \theta \quad(\text { since } \sin \theta \geq 0)
\end{aligned}
$$

which is the area of the parallelogram in the sketch below.

Algebraic Properties of the Cross Product

Let \mathbf{A}, \mathbf{B}, and \mathbf{C} be vectors and x, y be scalars. Then

Scalar Distributive Law

$$
(x \mathbf{A}) \times(y \mathbf{B})=(x y)(\mathbf{A} \times \mathbf{B})
$$

Vector Distributive Laws

$$
\begin{aligned}
& \mathbf{A} \times(\mathbf{B}+\mathbf{C})=(\mathbf{A} \times \mathbf{B})+(\mathbf{A} \times \mathbf{C}) \\
& (\mathbf{B}+\mathbf{C}) \times \mathbf{A}=(\mathbf{B} \times \mathbf{A})+(\mathbf{C} \times \mathbf{A})
\end{aligned}
$$

Miscellaneous Laws

$$
\begin{aligned}
\mathbf{A} \times \mathbf{B} & =-(\mathbf{B} \times \mathbf{A}) \\
\mathbf{0} \times \mathbf{A} & =\mathbf{0}
\end{aligned}
$$

Remark. It is worth noting that the cross product is NOT associative. That is,

$$
(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} \neq \mathbf{A} \times(\mathbf{B} \times \mathbf{C})
$$

Is the dot product associative?

Determinant Formula for Cross Products

There is a nice way to compute the cross product based on equation 3, example 1 and the distributive laws described above.

Recall that the determinant of a 2×2 matrix is given by the following formula.

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Now let $\mathbf{A}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{B}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$. Then

$$
\begin{aligned}
\mathbf{A} \times \mathbf{B} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\mathbf{j}\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\mathbf{k}\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
\end{aligned}
$$

Example 2. Computing a Vector Cross Product

Let $\mathbf{A}=\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}$ and $\mathbf{B}=3 \mathbf{i}+2 \mathbf{k}$.
Find $\mathbf{A} \times \mathbf{B}$.

$$
\begin{aligned}
\mathbf{A} \times \mathbf{B} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 3 & -2 \\
3 & 0 & 2
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{cc}
3 & -2 \\
0 & 2
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
1 & -2 \\
3 & 2
\end{array}\right|+\mathbf{k}\left|\begin{array}{ll}
1 & 3 \\
3 & 0
\end{array}\right| \\
& =(6-0) \mathbf{i}-(2-(-6)) \mathbf{j}+(0-9) \mathbf{k} \\
& =6 \mathbf{i}-8 \mathbf{j}-9 \mathbf{k}
\end{aligned}
$$

Recall that three non-collinear points determine a plane. The following example illustrates how we can use cross products to find vectors that are normal (orthogonal) to this plane.

Example 3. Consider the points $A(2,1,1), B(-2,1,3), C(0,-1,2)$. Find the area of $\triangle A B C$ and find a unit vector normal to the plane $A B C$.

Let

$$
\begin{aligned}
\mathbf{u} & =\overline{A B}=-4 \mathbf{i}+2 \mathbf{k} \\
\mathbf{v} & =\overline{A C}=-2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-4 & 0 & 2 \\
-2 & -2 & 1
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{cc}
0 & 2 \\
-2 & 1
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
-4 & 2 \\
-2 & 1
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
-4 & 0 \\
-2 & -2
\end{array}\right| \\
& =4 \mathbf{i}+8 \mathbf{k}
\end{aligned}
$$

It follows that $\mathbf{n}=\frac{4}{\sqrt{80}}(\mathbf{i}+2 \mathbf{k})$ is a unit vector normal to the given plane. Can you find another?

Explain why the area of $\triangle A B C$ is $\sqrt{80} / 2$.

