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12.3 The Dot Product

Suppose that a force is applied to an object as shown below.

θ

b

~F

~v
O

Now suppose we want to find the magnitude of the force ~F in the

direction of ~v (horizontal in this case). Then we need to find the angle

θ.

To do this we suppose that two nonzero vectors ~u and ~v are placed so

that their initial points coincide. Then they form an angle θ (in the plane

containing the two vectors) with 0 ≤ θ ≤ π.

θ
~v

~u
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Now θ = 0 if ~u and ~v are pointed in the same direction and θ = π if they

are pointed in the opposite direction. In general we have,

Theorem 1. Angle between two vectors. The angle θ between two

nonzero vectors ~u = 〈u1, u2, u3〉 and ~v = 〈v1, v2, v3〉 is given by

(1) θ = cos−1

(
u1v1 + u2v2 + u3v3

‖~u‖‖~v‖

)

The proof is a consequence of the Law of Cosines (see the text). The

numerator of the right-hand quantity in equation (1) is important

enough to have a name.

Definition. Dot Product

The dot product of two vectors ~u and ~v is

(2) ~u · ~v = u1v1 + u2v2 + u3v3

Remark. The dot product is also called the inner or scalar product.

Notice that the dot product of two vectors is a scalar.
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Example 1.

Let ~u = 〈1, 2,−3〉 and ~v = 〈−2, 3, 2〉. Find ~u · ~v and the angle θ between

these vectors. We have ‖~u‖ =
√
14 and ‖~v‖ =

√
17. Thus

~u · ~v = 1(−2) + 2(3) + (−3)(2)

= −2

and

θ = cos−1

( −2√
14
√
17

)

In view of Theorem 1 we have the following alternate definition of the

dot product.

(3) ~u · ~v = ‖~u‖‖~v‖ cos θ

where θ is the angle between ~u and ~v.
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Orthogonality

Two nonzero vectors are called orthogonal (or perpendicular) if the

angle between them is π/2. Can we use the dot product to determine if

two vectors are orthogonal?

Suppose that ~u and ~v are orthogonal. Then by (3) we know

~u · ~v = ‖~u‖‖~v‖ cosπ/2
= ‖~u‖‖~v‖(0)
= 0

On the other hand, if ~u,~v 6= 0 then

~u · ~v = 0

=⇒ cos θ = 0

=⇒ θ = π/2

These observations lead to the following definition.

Definition. Orthogonal Vectors

Vectors ~u and ~v are orthogonal if and only if ~u · ~v = 0.
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Example 2.

a. Let ~u = 3 i + 4 j and ~v = 4/5 i− 3/5 j. Show that ~u and ~v are

orthogonal. So

~u · ~v = (3 i + 4 j) · (4/5 i− 3/5 j)

= 12/5− 12/5

= 0

b. Clearly 0 · ~v = 0 hence 0 is orthogonal to every vector.

Proposition 2. Properties of the Dot Product

If ~u,~v, and ~w are vectors and k ∈ R then

1. ~u · ~v = ~v · ~u
2. (k~u) · ~v = ~u · (k~v) = k (~u · ~v)
3. ~u · (~v + ~w) = ~u · ~v + ~u · ~w
4. ~u · ~u = ‖~u‖2

5. 0 · ~u = 0

Proof. These are easy consequences of the definitions and are left as

exercises.

Remark. Item 2 above implies that if ~u is orthogonal to ~v then ~u is

orthogonal to every scalar multiple of ~v.
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Vector Projections

Consider the problem posed at the beginning of this section (a

modified form is illustrated in the sketch below).

θ
b

~v

~u

proj~v ~u

We need to find a formula for proj~v ~u. Since we already know the

direction (why?), all that we need is the length of proj~v ~u. From

trigonometry we have

cos θ =
‖proj~v ~u‖

‖~u‖

=⇒ ‖proj~v ~u‖ = ‖~u‖ cos θ = ‖~u‖ cos θ ‖~v‖‖~v‖

=
‖~u‖‖~v‖ cos θ

‖~v‖

=
~u · ~v
‖~v‖ (a more convenient form)
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Recall that the direction of ~v is given by ~v/‖~v‖. It follows that

proj~v ~u = ‖proj~v ~u‖ ×
~v

‖~v‖

=

(
~u · ~v
‖~v‖

)(
~v

‖~v‖

)

=

(
~u · ~v
‖~v‖2

)

~v

=

(
~u · ~v
~v · ~v

)

~v

In other words, the vector projection of u onto ~v is given by

proj~v ~u =

(
~u · ~v
~v · ~v

)

~v(4)

Remark. Technically, there’s a mistake in the logic above. What is it? The result is correct but the first

line assumes that θ is acute. Technically, the first line should be

proj
~v
~u = ±‖proj

~v
~u‖ × ~v

‖~v‖

The sign of the RHS of the expression is positive if θ is acute and negative otherwise. However, this all

comes out in the wash with the final formula above.
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Example 3. Let ~u = 3 i + 2 j. Find proj~v ~u for each of the following

vectors ~v below.

a. ~v = i

This one is easy. It should be proj~v ~u = 3 i. Do you see why?

b. ~v = 2 i

Should also be proj~v ~u = 3 i.

c. ~v = −6 i

Should also be proj~v ~u = 3 i. Here’s the calculation for this one. So

by (4) we have

proj~v ~u =
~u · ~v
~v · ~v ~v

=
3(−6)

36
(−6) i

= 3 i

~u

proj~v u

The “direction” ~v

In this example, the vector ~v is clearly in

the ± i direction in all 3 cases. As a conse-

quence, the projection (shown in red in the

sketch) must be the same in all 3 cases.
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Example 4. Finding a vector projection.

Let ~u = −3 i + 2 j and ~v = 2 i + j. Find proj~v ~u and orth~v ~u.

Notice that

~u · ~v = (−3)(2) + 2(1) = −4

~v · ~v = 22 + 12 = 5

a. proj~v ~u =
−4

5
~v =

−4

5
(2 i + j).

b. We have comp~v ~u =def ‖proj~v ~u‖ =
4√
5
. Why?
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Example 5. Vector Decomposition

Often, it is important to rewrite a vector as the sum of two other vectors

(as strange as this may seem). Using the vectors from the previous

example, rewrite ~u as the sum of two vectors, one parallel to ~v and the

other orthogonal to ~v.

From Example 4,

−3 i + 2 j = proj~v ~u +

orth~v ~u
︷ ︸︸ ︷

(~u− proj~v ~u)

=
−4

5
(2 i + j) +

(

(−3 i + 2 j)−
(−4

5
(2 i + j)

))

=
−4

5
(2 i + j) +

7

5
(−i + 2 j)

b

~v

~u

b

~u

proj~v ~u

orth~v ~u


