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12.3 The Dot Product

Suppose that a force is applied to an object as shown below.
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Now suppose we want to find the magnitude of the force F in the
direction of ¢ (horizontal in this case). Then we need to find the angle
6.

To do this we suppose that two nonzero vectors « and v are placed so
that their initial points coincide. Then they form an angle 6 (in the plane
containing the two vectors) with 0 < 6 < 7.
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Now ¢ = 0 if « and v are pointed in the same direction and ¢ = = if they
are pointed in the opposite direction. In general we have,

Theorem 1. Angle between two vectors. The angle ¢ between two
nonzero vectors 4 = (uq, us, u3) and v = (vy, v9, v3) IS given by

(1) 0 — cos! (uwl + U9y + U3?]3)
{icafyika

The proof is a consequence of the Law of Cosines (see the text). The
numerator of the right-hand quantity in equation (1) is important
enough to have a name.

Definition. Dot Product
The dot product of two vectors « and v'is
(2) U+ U = uv1 + Ugly + uzv3

Remark. The dot product is also called the inner or scalar product.
Notice that the dot product of two vectors is a scalar.
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Example 1.

Let = (1,2,—3) and v = (—2,3,2). Find « - v and the angle 6 between
these vectors. We have ||i|| = /14 and ||7/]| = V/17. Thus

-7 =1(-2)+2(3) + (=3)(2)
= —2

and

o )

In view of Theorem 1 we have the following alternate definition of the
dot product.

(3) - 0= ||ul[|v]] cos 0

where 6 is the angle between « and v.
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Orthogonality

Two nonzero vectors are called orthogonal (or perpendicular) if the
angle between them is 7 /2. Can we use the dot product to determine if
two vectors are orthogonal?

Suppose that « and ¢ are orthogonal. Then by (3) we know
u - U= ||ul|||V]| cos /2
= [l 121 (0)
=0
On the other hand, if @, v # 0 then

u-v=0>0
— cosf =0
— 0 =m/2

These observations lead to the following definition.

Definition. Orthogonal Vectors

0.

Vectors « and v are orthogonal if and only if « - v
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Example 2.

a. Letu=3i+4jand v=4/5i—3/5j. Show that « and v are
orthogonal. So
i-v=(3i+4j)-(4/51—3/5j)
—12/5 - 12/5
=0

b. Clearly 0- v =0 hence 0 is orthogonal to every vector.

Proposition 2. Properties of the Dot Product

If «, ¥, and w are vectors and k € R then

Proof. These are easy consequences of the definitions and are left as
exercises.

Remark. ltem 2 above implies that if @ is orthogonal to v then « is
orthogonal to every scalar multiple of v.
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Vector Projections

Consider the problem posed at the beginning of this section (a
modified form is illustrated in the sketch below).

We need to find a formula for proj «. Since we already know the
direction (why?), all that we need is the length of proj; «. From
trigonometry we have

roj;
cosf = Ip JU al

]
ol
— |l proj; | = |17 cost = 1] cos§ 1

_ lilio]f cos 6
il
iU

— Tl (a more convenient form)
(%
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Recall that the direction of ¢ is given by v/HUH It follows that

proj; u = || proj; | x 71—

o
- (W)
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In other words, the vector projection of u onto v is given by
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(4) proj. i — (

@l
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Remark. Technically, there’s a mistake in the logic above. What is it? The result is correct but the first
line assumes that 6 is acute. Technically, the first line should be

proj; @ = x| proj; uf| x ;—-

The sign of the RHS of the expression is positive if 8 is acute and negative otherwise. However, this all
comes out in the wash with the final formula above.
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Example 3. Let « = 3i + 2j. Find proj; « for each of the following

vectors v below.

a. v=1

This one is easy. It should be proj; « = 3i. Do you see why?

b. ¥=2i
Should also be proj; v = 3i.

C. U= —061

Should also be proj; @ = 3i. Here’s the calculation for this one. So

by (4) we have

proj; u =

In this example, the vector @ is clearly in
the +1i direction in all 3 cases. As a conse-
quence, the projection (shown in red in the
sketch) must be the same in all 3 cases.

I

The “direction” ¢
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Example 4. Finding a vector projection.

—

Let i =—-3i+2jand ¥ =2i+ j. Find proj; « and orth; «.

Notice that
U= (=3)(2)+2(1) = —4
7-0=2"4+1%=
., -4, - :
a. prO]UU:?U:—(Ql‘FJ)
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Example 5. Vector Decomposition

Often, it is important to rewrite a vector as the sum of two other vectors
(as strange as this may seem). Using the vectors from the previous
example, rewrite u as the sum of two vectors, one parallel to v and the
other orthogonal to v.

From Example 4,

orth; u
N\

7 )

—31+2j = proj; i+ (u — proj; u)
-4 .. C o -4 ..
=5 2i+j) + ((—31+23)— (? (21+J)))

—4
== (2i+j)+g(—i+2j)
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