12.3 The Dot Product

Suppose that a force is applied to an object as shown below.

Now suppose we want to find the magnitude of the force \vec{F} in the direction of \vec{v} (horizontal in this case). Then we need to find the angle θ .

To do this we suppose that two nonzero vectors \vec{u} and \vec{v} are placed so that their initial points coincide. Then they form an angle θ (in the plane containing the two vectors) with $0 \le \theta \le \pi$.

Now $\theta = 0$ if \vec{u} and \vec{v} are pointed in the same direction and $\theta = \pi$ if they are pointed in the opposite direction. In general we have,

Theorem 1. Angle between two vectors. The angle θ between two nonzero vectors $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$ is given by

(1)
$$\theta = \cos^{-1}\left(\frac{u_1v_1 + u_2v_2 + u_3v_3}{\|\vec{u}\|\|\vec{v}\|}\right)$$

The proof is a consequence of the Law of Cosines (see the text). The numerator of the right-hand quantity in equation (1) is important enough to have a name.

Definition. Dot Product

The dot product of two vectors \vec{u} and \vec{v} is

(2) $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$

Remark. The dot product is also called the inner or scalar product. *Notice that the dot product of two vectors is a scalar.*

Example 1.

Let $\vec{u} = \langle 1, 2, -3 \rangle$ and $\vec{v} = \langle -2, 3, 2 \rangle$. Find $\vec{u} \cdot \vec{v}$ and the angle θ between these vectors. We have $\|\vec{u}\| = \sqrt{14}$ and $\|\vec{v}\| = \sqrt{17}$. Thus

$$\vec{u} \cdot \vec{v} = 1(-2) + 2(3) + (-3)(2)$$

= -2

and

$$\theta = \cos^{-1}\left(\frac{-2}{\sqrt{14}\sqrt{17}}\right)$$

In view of Theorem 1 we have the following alternate definition of the dot product.

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$$

where θ is the angle between \vec{u} and \vec{v} .

12.3

Two nonzero vectors are called **orthogonal** (or perpendicular) if the angle between them is $\pi/2$. Can we use the dot product to determine if two vectors are orthogonal?

Suppose that \vec{u} and \vec{v} are orthogonal. Then by (3) we know

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \pi/2$$
$$= \|\vec{u}\| \|\vec{v}\| (0)$$
$$= 0$$

On the other hand, if $\vec{u}, \vec{v} \neq \mathbf{0}$ then

$$\vec{u} \cdot \vec{v} = 0$$
$$\implies \cos \theta = 0$$
$$\implies \theta = \pi/2$$

These observations lead to the following definition.

Definition. Orthogonal Vectors

Vectors \vec{u} and \vec{v} are **orthogonal** if and only if $\vec{u} \cdot \vec{v} = 0$.

Example 2.

a. Let $\vec{u} = 3\mathbf{i} + 4\mathbf{j}$ and $\vec{v} = 4/5\mathbf{i} - 3/5\mathbf{j}$. Show that \vec{u} and \vec{v} are orthogonal. So

$$\vec{u} \cdot \vec{v} = (3 \mathbf{i} + 4 \mathbf{j}) \cdot (4/5 \mathbf{i} - 3/5 \mathbf{j})$$

= 12/5 - 12/5
= 0

b. Clearly $\mathbf{0} \cdot \vec{v} = 0$ hence $\mathbf{0}$ is orthogonal to every vector.

Proposition 2. Properties of the Dot Product

If \vec{u}, \vec{v} , and \vec{w} are vectors and $k \in \mathbb{R}$ then

1.
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

2. $(k\vec{u}) \cdot \vec{v} = \vec{u} \cdot (k\vec{v}) = k (\vec{u} \cdot \vec{v})$
3. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
4. $\vec{u} \cdot \vec{u} = \|\vec{u}\|^2$
5. $\mathbf{0} \cdot \vec{u} = 0$

Proof. These are easy consequences of the definitions and are left as exercises.

Remark. Item 2 above implies that if \vec{u} is orthogonal to \vec{v} then \vec{u} is orthogonal to every scalar multiple of \vec{v} .

Vector Projections

Consider the problem posed at the beginning of this section (a modified form is illustrated in the sketch below).

We need to find a formula for $\mathbf{proj}_{\vec{v}}$ \vec{u} . Since we already know the direction (why?), all that we need is the length of $\mathbf{proj}_{\vec{v}}$ \vec{u} . From trigonometry we have

$$\cos \theta = \frac{\|\operatorname{proj}_{\vec{v}} \vec{u}\|}{\|\vec{u}\|}$$
$$\implies \|\operatorname{proj}_{\vec{v}} \vec{u}\| = \|\vec{u}\| \cos \theta = \|\vec{u}\| \cos \theta \frac{\|\vec{v}\|}{\|\vec{v}\|}$$
$$= \frac{\|\vec{u}\| \|\vec{v}\| \cos \theta}{\|\vec{v}\|}$$
$$= \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|} \text{ (a more convenient form)}$$

7

Recall that the direction of \vec{v} is given by $\vec{v}/||\vec{v}||$. It follows that

$$\begin{aligned} \mathbf{proj}_{\vec{v}} \ \vec{u} &= \| \mathbf{proj}_{\vec{v}} \ \vec{u} \| \times \frac{\vec{v}}{\|\vec{v}\|} \\ &= \left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|} \right) \left(\frac{\vec{v}}{\|\vec{v}\|} \right) \\ &= \left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2} \right) \vec{v} \\ &= \left(\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \right) \vec{v} \end{aligned}$$

In other words, the vector projection of \mathbf{u} onto \vec{v} is given by

(4)
$$\operatorname{proj}_{\vec{v}} \vec{u} = \left(\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}\right) \vec{v}$$

Remark. Technically, there's a mistake in the logic above. What is it? The result is correct but the first line assumes that θ is acute. Technically, the first line should be

$$\operatorname{\mathsf{proj}}_{ec v} ec u = \pm \|\operatorname{\mathsf{proj}}_{ec v} ec u\| imes rac{ec v}{\|ec v\|}$$

The sign of the RHS of the expression is positive if θ is acute and negative otherwise. However, this all comes out in the wash with the final formula above.

Example 3. Let $\vec{u} = 3\mathbf{i} + 2\mathbf{j}$. Find $\mathbf{proj}_{\vec{v}} \ \vec{u}$ for each of the following vectors \vec{v} below.

a. $\vec{v} = \mathbf{i}$

This one is easy. It should be $\mathbf{proj}_{\vec{v}}$ $\vec{u} = 3 \mathbf{i}$. Do you see why?

b. $\vec{v} = 2i$

Should also be $\mathbf{proj}_{\vec{v}}$ $\vec{u} = 3 \mathbf{i}$.

C. $\vec{v} = -6 i$

Should also be $\mathbf{proj}_{\vec{v}}$ $\vec{u} = 3 \mathbf{i}$. Here's the calculation for this one. So by (4) we have

$$\mathbf{proj}_{\vec{v}} \ \vec{u} = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$$
$$= \frac{3(-6)}{36} (-6) \mathbf{i}$$
$$= 3 \mathbf{i}$$

In this example, the vector \vec{v} is clearly in the $\pm i$ direction in all 3 cases. As a consequence, the projection (shown in red in the sketch) must be the same in all 3 cases.

Example 4. Finding a vector projection.

Let $\vec{u} = -3\mathbf{i} + 2\mathbf{j}$ and $\vec{v} = 2\mathbf{i} + \mathbf{j}$. Find $\mathbf{proj}_{\vec{v}} \ \vec{u}$ and $\operatorname{orth}_{\vec{v}} \ \vec{u}$. Notice that

$$\vec{u} \cdot \vec{v} = (-3)(2) + 2(1) = -4$$

 $\vec{v} \cdot \vec{v} = 2^2 + 1^2 = 5$

a. $\operatorname{proj}_{\vec{v}} \vec{u} = \frac{-4}{5} \vec{v} = \frac{-4}{5} (2\mathbf{i} + \mathbf{j}).$

b. We have $\operatorname{comp}_{\vec{v}} \vec{u} = {}^{\operatorname{def}} \|\operatorname{proj}_{\vec{v}} \vec{u}\| = \frac{4}{\sqrt{5}}$. Why?

Example 5. Vector Decomposition

Often, it is important to rewrite a vector as the sum of two other vectors (as strange as this may seem). Using the vectors from the previous example, rewrite \vec{u} as the sum of two vectors, one parallel to \vec{v} and the other orthogonal to \vec{v} .

From Example 4,

$$-3\mathbf{i} + 2\mathbf{j} = \mathbf{proj}_{\vec{v}} \ \vec{u} + (\vec{u} - \mathbf{proj}_{\vec{v}} \ \vec{u})$$
$$= \frac{-4}{5} (2\mathbf{i} + \mathbf{j}) + \left((-3\mathbf{i} + 2\mathbf{j}) - \left(\frac{-4}{5} (2\mathbf{i} + \mathbf{j}) \right) \right)$$
$$= \frac{-4}{5} (2\mathbf{i} + \mathbf{j}) + \frac{7}{5} (-\mathbf{i} + 2\mathbf{j})$$

