12.1 Three Dimensional Coordinate Systems

We often refer to the $x y$-coordinate system as the Euclidian plane or simply, the plane. In symbols the plane is denoted \mathbb{R}^{2}. To identify a point in the plane, we use its Cartesian (or rectangular) coordinates. That is, we identify each point in $P \in \mathbb{R}^{2}$ using the notation $P(x, y)$ or simply (x, y). In this course we will also be working with the three-dimensional analogue of the plane, \mathbb{R}^{3} or three-space.

The above sketch shows a (right-handed) three-dimensional coordinate system. Here the ordered triple (x, y, z) gives the coordinates of a point Q as indicated in the sketch (the red and blue lines are artificial and have been included to give the reader a sense of perspective).

The sketch below shows the infinite plane $x=0$.

In a similar manner one can sketch the graphs of the equations $y=0$ and $z=0$.

Notice that these three planes break up three-space into eight octants. The first octant coincides with positive x, y and z-coordinates and is three-dimensional analogue of quadrant I in the plane.

Distance and Spheres in Space

Proposition 1. The Distance Formula

Let $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ be points in space (i.e., $\left.P_{1}, P_{2} \in \mathbb{R}^{3}\right)$. The distance between P_{1} and P_{2} is

$$
\begin{equation*}
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \tag{1}
\end{equation*}
$$

Proof. Apply the Pythagorean Theorem twice.

It follows from the distance formula given above that the equation of a sphere of radius a centered at $\left(x_{0}, y_{0}, z_{0}\right)$ is given by
(2)

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=a^{2}
$$

