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Example 1. Let f(x, y) =
3y

√
x

2
and let C be given by the vector equation

(1) r(t) = t i +
2t3/2

3
j, 0 ≤ t ≤ 3.

Evaluate the line integral

(2)

ˆ

C

f(x, y) ds.

Using the substitution u = 1 + t, it is not difficult to show that
ˆ

C

f(x, y) ds =

ˆ 3

0

f (r(t)) |r′(t)| dt

=

ˆ 3

0

t2
√
1 + t dt

=

ˆ 4

1

(u− 1)2
√
u du

=
...

=

(
2u7/2

7
− 4u5/2

5
+

2u3/2

3

) 4

1

=
1696

105
≈ 16.15

But what does it mean? The sketch below shows the graph of the function z = f(x, y) for
(x, y) ∈ C.
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A quite reasonable interpretation is that the integral in (2) is the “area under the curve” (shown
in green). Our experience from first semester calculus suggests that we might approximate this
integral using Riemann Sums. That is, we will use the estimate

(3)

ˆ

C

f(x, y) ds ≈
n∑

j=1

f (xj, yj) ∆sj

for a suitably chosen partition of the arc length interval.

In section 13.3 we learned that the arc length parameter is given by

s(t) =

ˆ t

0

|r′(τ)| dτ

=

ˆ t

0

√
(
dx

dτ

)2

+

(
dy

dτ

)2

dτ

=

ˆ t

0

√
1 + τ dτ

It follows that

s(t) =
2

3

(
(1 + t)3/2 − 1

)
(4)

Notice that s(0) = 0 and s(3) = 14/3. So we must partition the interval S = [0, 14/3] and proceed
in the usual manner. It is a little easier to partition the t-interval [0, 3] and work with the induced
partition on S. Using (1) and (4) we construct the table below. (E.g., t6 = 1.5, s9 = 3.24, etc.)

index t s x y f(x, y)
0 0 0 0 0 0
1 0.25 0.27 0.25 0.08 0.06
2 0.50 0.56 0.50 0.24 0.25
3 0.75 0.88 0.75 0.43 0.56
4 1.00 1.22 1.00 0.67 1.00
5 1.25 1.58 1.25 0.93 1.56
6 1.50 1.97 1.50 1.22 2.25
7 1.75 2.37 1.75 1.54 3.06
8 2.00 2.80 2.00 1.89 4.00
9 2.25 3.24 2.25 2.25 5.06
10 2.50 3.70 2.50 2.64 6.25
11 2.75 4.17 2.75 3.04 7.56
12 3.00 4.67 3.00 3.46 9.00

Here we have chosen a partition of [0, 3] with 12 equal subintervals.
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Now let ∆sj = sj − sj−1, j = 1, 2, . . . , 12. Then the upper and lower Riemann Sums for the given
interval are easy to calculate.

Lower Riemann Sum =
12∑

j=1

f (sj−1) ∆sj

= 0 · (0.27) + 0.06 · (0.29) + · · · + 7.56 · (0.5)
≈ 13.69

and

Upper Riemann Sum =
12∑

j=1

f (sj) ∆sj

= 0.06 · (0.27) + 0.25 · (0.29) + · · · + 9.0 · (0.5)
≈ 18.12

Notice that

13.69 ≤
ˆ

C

f(x, y) ds =
1696

105
≤ 18.12

as we might expect.
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There is a bit more that we can learn from this example. By the Fundamental Theorem of
Calculus (or a direct calculation),

s′(t) =
√
1 + t > 0 for t ∈ (0, 3)

Hence s is increasing on T and, as such, is invertible. It follows from (4) that

(5) t =

(
3s

2
+ 1

)2/3

− 1

We can now evaluate
´ 3

0
t2
√
1 + t dt by carrying out the substitution suggested by (4) and (5).

Thus

ˆ 3

0

t2
√
1 + t dt

︸ ︷︷ ︸

ds

=

ˆ s(3)

s(0)

((
3s

2
+ 1

)2/3

− 1

)2

ds(6)

=

ˆ 14/3

0

((
3s

2
+ 1

)4/3

− 2

(
3s

2
+ 1

)2/3

+ 1

)

ds

=
...

=

(
2

7
(8)7/3 − 4

5
(8)5/3 +

14

3

)

−
(
2

7
(1)− 4

5
(1) + 0

)

=
1696

105

as we saw above.

Now let g(s) = ((3s/2 + 1)2/3 − 1)2, i.e., the integrand on the right-hand side of (6) above. We
sketch the graph of w = g(s) below.
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The data points correspond to the third and last columns from the table on page 2. Notice that
the integration carried out above yields the area under the curve w = g(s).
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Finally, the sketches below are a feeble attempt to show what the sheet would look like if the
sheet was “unrolled” onto the xz-plane. Compare with the graph of w = g(s) redrawn below.
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