

Figure 1: A parabolic cap

Example 1. Let $\mathbf{G}=3 y z \mathbf{i}+x \mathbf{j}+x y \mathbf{k}$. Let S (see Fig. 1) be the level surface of $g(x, y, z)=x^{2}+y^{2}+z=9, \quad z \geq 0$, oriented so that the vector normal has a positive \mathbf{k} component. Evaluate the surface integral below using 3 different methods as we did in Example 16.8.1.

$$
\begin{equation*}
\iint_{S} \nabla \times \mathbf{G} \cdot \mathbf{n} d S \tag{1}
\end{equation*}
$$

Remark. Notice that the vector field \mathbf{G} is different than the vector field $\mathbf{F}=2 y \mathbf{i}-3 x \mathbf{j}-z^{2} \mathbf{k}$ given in Example 16.8.1. In particular,

$$
\begin{align*}
\nabla \times \mathbf{G} & =x \mathbf{i}+2 y \mathbf{j}+(1-3 z) \mathbf{k} \tag{2}\\
& \neq-5 \mathbf{k}=\nabla \times \mathbf{F}
\end{align*}
$$

(a) Direct Computation

As we saw in Example 16.8.1, the vector equation for S is given by

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+\left(9-x^{2}-y^{2}\right) \mathbf{k},(x, y) \in R
$$

where $R=\left\{(x, y) \mid x^{2}+y^{2} \leq 9\right\}$. Now

$$
\mathbf{r}_{x}=\mathbf{i}-2 x \mathbf{k} \quad \text { and } \quad \mathbf{r}_{y}=\mathbf{j}-2 y \mathbf{k}
$$

so that

$$
\begin{equation*}
\mathbf{r}_{x} \times \mathbf{r}_{y}=2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k} \tag{3}
\end{equation*}
$$

Thus

$$
\nabla \times \mathbf{G}(\mathbf{r}(x, y))=x \mathbf{i}+2 y \mathbf{j}+\left(1-3\left(9-x^{2}-y^{2}\right)\right) \mathbf{k}
$$

Now combine (2) and (3) to obtain

$$
\nabla \times \mathbf{G}(\mathbf{r}(x, y)) \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right)=5 x^{2}+7 y^{2}-26
$$

It follows that

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{G} \cdot \mathbf{n} d S & =\iint_{R} \nabla \times \mathbf{G}(\mathbf{r}(x, y)) \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right) d A \\
& =\iint_{R} 5 x^{2}+7 y^{2}-26 d A \\
& =5 \iint_{R} x^{2} d A+7 \iint_{R} y^{2} d A-26 \iint_{R} d A \\
& =5 \times \frac{81 \pi}{4}+7 \times \frac{81 \pi}{4}-26 \times 9 \pi \\
& =9 \pi
\end{aligned}
$$

(b) Using Stokes' Theorem

Notice that the boundary of S lives in the $x y$-plane. We first compute the (counterclockwise) circulation around the closed curve ∂S which has the vector equation

$$
\partial S: \quad \mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}+0 \mathbf{k}, \quad 0 \leq t \leq 2 \pi
$$

Thus

$$
\begin{aligned}
d \mathbf{r}(t) & =-3 \sin t d t \mathbf{i}+3 \cos t d t \mathbf{j} \\
\mathbf{F} & =3 y z \mathbf{i}+x \mathbf{j}+x y \mathbf{k} \\
\mathbf{F}(\mathbf{r}(t)) & =0 \mathbf{i}+3 \cos t \mathbf{j}+9 \sin t \cos t \mathbf{k}
\end{aligned}
$$

so that

$$
\mathbf{F}(\mathbf{r}(t)) \cdot d \mathbf{r}=9 \cos ^{2} t d t
$$

So by Stokes' Theorem

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{G} \cdot \mathbf{n} d S & =\oint_{C} \mathbf{F} \cdot d \mathbf{r} \\
& =9 \int_{0}^{2 \pi} \cos ^{2} t d t \\
& =9 \pi
\end{aligned}
$$

as we saw in part (a).
Notice that the circulation integral calculation above was a bit easier the surface integral calculation in part (a).

(c) Exploiting Green's Theorem

As we observed above, ∂S happens to lie in the $x y$-plane. Now let R be as indicated in part (a). Then by Stokes' Theorem and (the tangential form of) Green's Theorem, we have

$$
\begin{aligned}
\iint_{S} \nabla \times \mathbf{G} \cdot \mathbf{n} d S & =\oint_{\partial S} \mathbf{G} \cdot d \mathbf{r} \\
& =\iint_{R} \nabla \times \mathbf{G} \cdot \mathbf{k} d A \\
& =\iint_{R}(1-3 z) d A \\
& =\iint_{R}(1-0) d A, \quad \text { (since } z=0 \text { in the } x y \text {-plane) } \\
& =9 \pi
\end{aligned}
$$

