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Figure 1: F = (x2 − 3y) i+ (2x− sin y) j

Example 1. Let F (x, y) =
〈
x2 − 3y, 2x− sin y

〉
and let C1 be given by the

vector equation

(1) r1(t) = cos t i+ sin t j, 0 ≤ t ≤ π.

Evaluate the flow integral

(2)

ˆ

C1

F(x, y) · dr

This does not appear to be a pleasant integral to work with. Nevertheless, let’s
try. So

x = cos t, dx = − sin t dt

y = sin t, dy = cos t dt

It follows that

M = x2 − 3y = cos2 t− 3 sin t

N = 2x− sin y = 2 cos t− sin(sin t)

and

F · dr = M dx+N dy

=
[(
3 sin t− cos2 t

)
sin t+ (2 cos t− sin(sin t)) cos t

]
dt
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It follows that
ˆ

C1

F(x, y) dr =

ˆ π

0

[(
3 sin t− cos2 t

)
sin t+ (2 cos t− sin(sin t)) cos t

]
dt

=

ˆ π

0

(
3 sin t− cos2 t

)
sin t dt

︸ ︷︷ ︸

I1

+

ˆ π

0

(2 cos t− sin(sin t)) cos t dt

︸ ︷︷ ︸

I2

(3)

Continuing we have

I1 = 3

ˆ π

0

sin2 t dt−
ˆ π

0

cos2 t sin t dt

=
3π

2
+

ˆ −1

1

u2 du

=
3π

2
−

2

3

and

I2 = 2

ˆ π

0

cos2 t dt−
ˆ π

0

sin(sin t) cos t dt

= π −
ˆ

0

0

sin u du

= π − 0

Putting this all together we see that
ˆ

C1

F(x, y) dr =
3π

2
−

2

3
+ π =

5π

2
−

2

3

Even though the last few calculations were not difficult, it would be nice if there
was an easier way. For example, if the given vector field was conservative, then we
could just find a potential function for F and invoke the Fundamental Theorem of
Line Integrals. However, a quick inspection will reveal that the given field is not
conservative.
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Figure 2: Green’s Theorem

Instead we create a situation which allows us to use Green’s Theorem. Let C2 be
the line segment from (−1, 0) to (1, 0). It might be easier to find the
counterclockwise circulation around the closed curve C = C1 ∪ C2 (see Figure 2).
So let R be the region enclosed by C. Then by the Tangential Form of Green’s
Theorem,

ˆ

C

F · dr =
¨

R

(
∂N

∂x
−

∂M

∂y

)

dA

=

¨

R

(2− (−3)) dA

= 5×
(
1

2
area of unit circle

)

=
5π

2

But how does that help us?

Notice that
ˆ

C1

F · dr =
ˆ

C

F · dr−
ˆ

C2

F · dr

=
5π

2
−
ˆ

C2

F · dr

So it would appear that we have traded one tedious calculation (integrating along
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C1) with another equally tedious calculation (integrating along C2). However, a
careful inspection will show that the last integral is much easier to compute.

Let r2(t) = t i, −1 ≤ t ≤ 1. Then dr = i dt and

ˆ

C2

F · dr =
ˆ

1

−1

(
t2 − 3(0)

)
dt = 2/3

It follows that
ˆ

C1

F · dr =
5π

2
− 2/3

as we saw above.
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Let’s try another one.
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Figure 3: F = 2xy i+ (x2 + bx) j

Example 2. Let a, b > 0 and F = 2xy i+ (x2 + bx) j. Also let C1 be given by the
vector equation

(4) r1(t) = cos t i+ sin t j, tan−1 a ≤ t ≤ tan−1 a+ π

Evaluate the flow integral

(5)

ˆ

C1

F · dr

In other words, find the work done by a particle moving along the unit circle from
P to Q (see Figure 3). Here

P = P
(

(1 + a2)−1/2, a(1 + a2)−1/2
)

Q = P
(

−(1 + a2)−1/2,−a(1 + a2)−1/2
)

Using our usual notation we have M = 2xy and N = x2 + bx and that

∂N

∂x
−

∂M

∂y
= 2x+ b− 2x = b > 0

So if we could use Green’s Theorem, the calculation of the circulation integral
would be trivial.
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Figure 4: Another Application of Green’s Theorem

So let C2 be the straight line segment from Q to P and let R represent the region
enclosed by the closed loop C = C1 ∪ C2 (see Figure 4). Then R is a half-disk (of
the unit circle) and by Green’s Theorem

ˆ

C

F · dr =
ˆ ˆ

C

(
∂N

∂x
−

∂M

∂y

)

dA

=

ˆ ˆ

C

b dA

= b× the area of R

=
πb

2

It follows that
ˆ

C1

F · dr =
πb

2
−
ˆ

C2

F · dr

We leave as an exercise to show that
ˆ

C2

F · dr =
2a

(1 + a2)3/2

It follows that
ˆ

C1

F · dr =
πb

2
−

2a

(1 + a2)3/2
(6)
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There is much we can learn from this example. Notice that if b = 0 then F is a
conservative vector field with potential function f(x, y) = x2y. It follows that

ˆ

C1

F · dr =
ˆ Q

P

df

= x2y
Q

P

=
−2a

(1 + a2)3/2

in agreement with (6).

Finally, we compute the integral below directly.
ˆ

C1

F · dr =
ˆ

C1

M dx+N dy

= −2

ˆ π+tan−1 a

tan−1 a

cos t sin2 t dt

︸ ︷︷ ︸

I1

+

ˆ π+tan−1 a

tan−1 a

(cos2 t+ b cos t) cos t dt

︸ ︷︷ ︸

I2
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Now

I1 =
−2 sin3 t

3

π+tan−1 a

tan−1 a

=
4a3

3(1 + a2)3/2

and

I2 =

ˆ π+tan−1 a

tan−1 a

cos3 t dt+ b

ˆ π+tan−1 a

tan−1 a

cos2 t dt

=

ˆ π+tan−1 a

tan−1 a

(1− sin2 t) cos t dt+
πb

2

=

ˆ −a√
1+a

2

a√
1+a

2

(1− u2) du+
πb

2

=

(

u−
u3

3

) −a√
1+a

2

a√
1+a

2

+
πb

2

=
−2a(3 + 2a2)

3(1 + a2)3/2
+

πb

2

It follows that
ˆ

C1

F · dr = I1 + I2

=
4a3

3(1 + a2)3/2
+

−2a(3 + 2a2)

3(1 + a2)3/2
+

πb

2

=
πb

2
−

2a

(1 + a2)3/2

as we saw above.


