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Central automorphisms, Z∗-theorems,

and loop structure

Jonathan I. Hall

Abstract. We discuss central automorphisms of partial linear spaces, particularly those
with three points per line. When these automorphisms have order two and their products
are restricted to have odd order, we are in the situation of Glauberman's Z∗-theorem.
This sheds light on the structure of various coordinatizing loops, particularly Bol and
Moufang loops.

1. Introduction

The topics to be considered here go back to Veblen and Young and even
to Hilbert. They involve the interplay among geometry, group theory, and
algebraic systems.

A partial linear space is a geometric incidence system, which may or
may not come from some larger system with more structure, such as a
vector space. Particular examples are 3-nets and Latin square designs.
Central automorphisms are a particularly elegant sort of automorphism for
the partial linear space; if there are many of them, then the space can often
be coordinatized by a structured algebraic system. We encounter a fusion
of geometry, group theory, and algebra. Various of these topics can then be
used to shed light upon the others. That is our underlying theme.

In a paper [22] presented at an earlier conference in this series, the
author discussed at great length the techniques associated with assigning
coordinates and studying their properties. Less of that will be done here.
Instead we will focus on the interaction of the areas. Some categorical
sca�olding is erected for this. Certain algebraic and geometric questions
require group theoretic Z∗-theorems for their solution, but these theorems
have much broader impact. Finally we discuss some consequences of the
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geometric, categorical, and group theoretic results for the structure of as-
sociated loops, particularly Bol and Moufang loops.

As this is a survey article, many results are left unproven or proofs
are only suggested. This is a regrettable consequence of a lack of space
and time. An exception is made for Fischer's Z∗-Theorem 5.4, which we
treat completely and in detail, providing it with a broader stage and a
more accessible proof. Most of the missing proofs will appear elsewhere
(especially in [23]). In any event, many of the results are not new. The
primary message is that the varying points of view presented here can render
topics more accessible.

Our general references for group theory are Aschbacher [1], Hall [26],
and Kurzweil and Stellmacher [31]; for category theory, Jacobson [29]; for
classical groups and geometry, Taylor [45]; for the octonions, Springer and
Veldkamp [44]; and for general loop theory, Bruck [5] and P�ugfelder [40].

2. Quasigroups and loops

A quasigroup (L, ·) is a nonempty set L equipped with a binary multipli-
cation · : L × L −→ L and such that, for each a ∈ L, the right and left
translation maps R(a) : L −→ L and L(a) : L −→ L given by

qR(a) = q · a and qL(a) = a · q

are permutations of L. If there is a two-sided identity element 1L = 1(L,·)
then L is a loop. We typically write L in place of (L, ·) when the multipli-
cation is clear and also often denote multiplication by juxtaposition.

The requirement that R(a) and L(a) always be permuations is equivalent
to the combinatorial statement that the multiplication table (Cayley table)
of (L, ·) is a Latin square: an |L| × |L| matrix in which each element of L is
an entry exactly once in each row and exactly once in each column.

The opposite (L, ?) of the quasigroup (L, ·) is given by a? b = b ·a. This
corresponds to replacing the multiplication table by its transpose, clearly
still a Latin square. There are four other conjugate quasigroups associated
with (L, ·) � the two quasigroups (L, /) and (L, \) with multiplications given
by

a/b = aR(b)−1 and a\b = bL(a)−1

and their opposites. At the level of Latin squares, the six conjugates corre-
spond to the six possible permutations for the roles taken by rows, columns,
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and entries. This is clearer in the context of Latin square designs, which
will be introduced in Section 3.3.

A homotopism from the quasigroup (L, ·) to the quasigroup (R, ◦) is a
triple (α, β, γ) of maps from L to R with the property that

xα ◦ yβ = (x · y)γ

for all x, y ∈ L. A homotopism is an isotopism if each of its three maps is
a bijection and an autotopism if (R, ◦) = (L, ·). The autotopisms are thus
triples (α, β, γ) of permutations of L with xαyβ = (xy)γ for all x, y ∈ L,
and they form the group Atp(L) � the autotopism group of L.

A homomorphism from the loop (L, ·) to the loop (R, ◦) is a homotopism

(α, β, γ) with 1α
L = 1R, 1β

L = 1R, and 1γ
L = 1R, from which it easily follows

that α = β = γ. The kernel of the homomorphism γ is then the subloop of
elements x of L with xγ = 1R. A subloop of L is normal if it is the kernel
of some homomorphism.

It is thus possible to talk about normal series for a loop and the factors
in that series. In particular, a loop is solvable if it has a normal series
of �nite length in which all factors are abelian groups. There is also the
stronger concept of nilpotency, which will be discussed below.

A nonidentity loop is simple if its only normal subloops are the identity
and itself.

For L a quasigroup, we de�ne within Sym(L) (the symmetric group on
the set L) the right multiplication group

RMult(L) = 〈R(x) | x ∈ L 〉 ,

the left multiplication group

LMult(L) = 〈L(x) | x ∈ L 〉 ,

and the multiplication group

Mult(L) = 〈R(x),L(x) | x ∈ L 〉 = 〈RMult(L),LMult(L)〉.

The inner mapping group is then the stabilizer of the identity in the multi-
plication group:

IMult(L) = {α ∈ Mult(L) | 1α = 1 } .

The normal subloops of L are precisely those subloops �xed globally by
IMult(L); see [5, p. 61] or [40, I.7.5].
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In particular, the �xed points of IMult(L) form a normal subloop, the
center of L. The loop L is then nilpotent if its ascending central series
reaches L in a �nite number of steps.

We shall particularly be interested in certain varieties of quasigroups
and loops � subclasses that are de�ned through the satisfaction of particular
identical relations. For instance, the category of groups arises as the variety
of all loops that satisfy identically the associativity relation:

x(yz) = (xy)z.

A quasigroup is a distributive quasigroup if it satis�es the identical re-
lations

(ax)(ay) = a(xy) and (xa)(ya) = (xy)a.

A loop is an Moufang loop if it satis�es the identical relation

(xa)(bx) = (x(ab))x.

With a = 1 in the Moufang identity, we get the �exible identity

x(bx) = (xb)x.

This implies that the opposite of a Moufang loop is again a Moufang loop.
A loop is an (right) Bol loop if it satis�es the identical relation

a(x(bx)) = (a(xb))x.

The opposite of a right Bol loop is a left Bol loop, given by the corresponding
opposite identity. Our convention is to consider only right Bol loops, which
we will refer to as Bol loops.

These last three identities are consequences of associativity. Therefore
a group is a special type of Moufang loop and of Bol loop. It is also easy
to see that a Moufang loop is a Bol loop. On the other hand, there are Bol
loops that are not Moufang loops and Moufang loops that are not groups.

It turns out that Moufang loops are also alternative. That is, they satisfy
the identities

a(xx) = (ax)x and (xx)a = x(xa).

In loops we must distinguish between right inverses and left inverses,

x(−1x) = 1 and (x−1)x = 1,
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as they need not be the same. We say that inverses are two-sided if we have
any one of the three equivalent identities

−1x = x−1, (x−1)−1 = x , or −1(−1x) = x.

A loop is a right inverse property loop if it satis�es the identity

(ax)(−1x) = a

and a left inverse property loop if it satis�es the identity

x−1(xa) = a.

The loop is an inverse property loop if it satis�es both of these identities.
Moufang loops are inverse property loops, while in general right Bol loops
have only the right inverse property (left Bol loops, the left inverse prop-
erty).

In right inverse property loops and especially inverse property loops,
inverses are always two sided. Indeed, if we set a = −1x in the right inverse
property, we �nd (−1xx)(−1x) = −1x. After cancelling −1x from the right,
we are left with −1xx = 1; inverses are two-sided.

3. Central automorphisms of partial linear spaces

A partial linear space (P,L) is a set of points P and a set of lines L together
with an incidence relation ∼ satisfying:

There do not exist distinct points a, b and distinct lines k, l with
a ∼ k ∼ b ∼ l ∼ a.

The axiom is selfdual in the sense that (P,L) is a partial linear space if and
only if (L,P) is. The partial linear space is a linear space when every pair
of points is incident to a unique line.

The partial linear spaces of interest to us will typically have the further
(selfdual) nondegeneracy axiom:

Every point is incident to at least two lines, and every line is incident
to at least two points.

Therefore we can identify each line with the subset of points incident to it.
We do not require nondegeneracy, since we want to allow a set of points all
incident to a unique line as a partial linear space, albeit a half degenerate
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one. Even in that case, we can identify the line with the set of points
incident to it.

For the partial linear space (P,L), consider a subset P0 of P with the
property:

if ` ∈ L with |P0 ∩`| > 2, then ` ⊂ P0.

Then (P0,L0) is a subspace of (P,L), where L0 is the subset of lines of L
meeting P0 in more than one point.

The automorphism group Aut(P,L) is the set of all permutations σ of
P that take lines to lines:

` ∈ L ⇐⇒ `σ ∈ L .

The basic concept here is that of a central automorphism of (P,L). This
is nonidentity automorphism σ for which there is a point p ∈ P with the
property that

pσ = p and `σ = ` whenever p ∈ ` ∈ L.

The point p is the center of σ. The dual of a center is an axis � a line that is
�xed pointwise by σ. We say that the central automorphism σ with center
p is p-axis-free if it has no axis incident to p.

3.1. Desarguesian planes

A projective plane is a linear space in which every pair of lines intersect in
a unique point. (That is, a projective plane is a linear space whose dual is
also a linear space.) To avoid degeneracies, we also require that there are
four points with no three on a line. This assumption implies its dual and
also that each line is incident to at least three points and dually. (For the
material here on projective planes, see [26, Chap. 20] and [41].)

The canonical examples of projective planes are the Desarguesian planes:
for D a division ring, the point set consists of all 1-spaces from the Cartesian
cube D3 and line set consists of all the 2-spaces of D3; incidence is given
by containment.

It is well-known [26, Theorem 20.4.1] that a central automorphism of
a projective plane also acts as a central automorphism on the dual plane.
Thus in the plane not only is there a point that is �xed linewise, there is
also a line that is �xed pointwise, an axis; both center and axis are unique.
The central automorphism is an elation if the center and axis are incident.
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Let (P,L) be a projective plane. If a, b are two points of a line through
p with neither on the line `, then there is at most one central automorphism
with center p and axis ` that takes a to b. A classical theorem character-
izes the case where such an automorphism exists for all possible choices of
a, b, p, `.

Theorem 3.1. A projective plane is Desarguesian if and only if it admits
all possible central automorphisms.

That is, a plane that admits all possible central automorphisms can be
coordinatized by a division ring.

We can consider more general coordinatizing rings.

Theorem 3.2. A projective plane can be coordinatized by an alternative
division algebra if and only if it admits all possible elations.

The �rst theorem is essentially due to Veblen and Young [48]. In fact a
version only covering planes over �elds was found by Hilbert. The second
theorem was largely proven by Moufang [33] although a complete proof was
�rst given by Hall [25].

Both theorems were classically phrased in terms of the closure of certain
con�gurations of points and lines in the plane: the Desargues con�guration
for the �rst theorem, the Little Desargues con�guration (a special case) for
the second theorem. Hilbert's result replaced the Desargues con�guration
with the Pappus con�guration. (See [41] for extensive discussion.)

Octonion division algebras are the prime examples of alternative division
algebras, and they satisfy the Moufang identity. This led Moufang to the
study of loops satisfying this and other related properties [34].

The equivalence of algebraic identities like those of Moufang and Bol
with the existence of various geometric automorphisms, in turn equivalent
to the closure of certain geometric �gures (as discussed above) was an ac-
tive topic of study in the �rst half of the last century. Reidermeister [42],
Thomsen [46], Bol [3], and their collaborators worked on 3-nets (3-webs)
of parallel classes of lines in the Euclidean plane. See also Bruck [5] and
Pickert [41]. The geometric study has been revived more recently, partic-
ularly in the paper of Funk and P. Nagy [16] which describes in detail the
relationships between Bol re�ections on a 3-net (the dual of certain central
automorphisms of the Latin square designs to be introduced in Section )
and coordinatizing Bol loops. See also [24, 38].
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3.2. Partial linear spaces with three points per line

We are particularly interested in partial linear spaces with exactly three
points per line. In this case, the �xed point set of any automorphism is the
point set of a subspace. A linear space with three points on each line is
usually called a Steiner triple system. We call a partial linear space with
exactly three points per line a triple system.

In the literature a point of a partial linear space is sometimes called
deep if there is a proper subspace containing all of the lines on that point.
We call (P,L) shallow if it has no deep points; that is, if the only subspace
containing the lines through any given point is (P,L) itself. In particular
all Steiner triple systems are shallow.

Proposition 3.3. Let (P,L) be a shallow triple system. In Aut(P,L) there
is at most one a-axis-free central automorphism τa with center a for each
a ∈ P. If τa exists then it has order 2 and is central in the stabilizer of a
in Aut(P,L), and τ g

a = τag for all g ∈ Aut(P,L).
If τa and τb exist in Aut(P,L) with a and b collinear, then τaτb has

order 3 and 〈τa, τb〉 is isomorphic to Sym(3), the symmetric group of degree
3. The set of all points a for which τa exists is the point set of a subspace
of (P,L).

Proof. If t1 and t2 are two a-axis-free central automorphisms of (P,L) with
center a, then the automorphism t = t1t2 of (P,L) is trivial on the points
collinear with a. The �xed points of t form a subspace containing all these
points, and as the space is shallow this subspace is the whole space. There-
fore t = 1. We conclude that if there is an a-axis-free central automorphism
with center a, then it is unique and has order 2.

For g ∈ Aut(P,L), the conjugate τ g
a is clearly an axis-free central auto-

morphism of (P,L) with center ag. Therefore by uniqueness τ g
a = τag and,

especially, τa is in the center of the stabilizer of a in Aut(P,L).
In particular if {a, b, c} ∈ L and τa and τb are automorphisms, then

τbτaτb = τ τb
a = τc = τ τa

b = τaτbτa

and therefore

(τaτb)3 = (τaτbτa)(τbτaτb) = τ2
c = 1.

Therefore 〈τa, τb〉 ' Sym(3), and especially τc exists.



Central automorphisms, Z∗-theorems, and loop structure 77

The group Sym(3) is equally well the dihedral group of order 6, as the
calculations above reveal. Dihedral groups and their generation properties
form the backbone of Section 4.3 below and are discussed at length there.

Central automorphisms of triple systems �rst arose in the work of Hall
[27]. There he showed that the Steiner triple systems admitting axis-free
central automorphisms at each point are exactly the Steiner triple systems
in which every set of three points lies in a subsytem (subspace) with exactly
nine points � a copy of the a�ne plane over F3. Such Steiner triple systems
are called Hall triple systems. A�ne spaces of arbitrary dimension over F3

are examples, but he showed that others exist.
Central automorphisms of the a�ne plane over F3 must be axis-free,

and so this holds for all Hall triple systems. By Proposition 3.3, the central
automorphisms of Hall triple systems form a conjugacy class of elements of
order 2 in the automorphism group with the property that any two have
product of order 3. Groups of this type will be discussed at length in Section
4.3 below.

Hall found a Hall triple systems generated by four of its points that
had 81 points, as opposed to the 27 points found in an a�ne space over F3

generated by four of its points. He did this by examining a presentation
for a group generated by four elements of order 2, the putative central
automorphisms, subject to relations forced by Proposition 3.3. Lemma 4.2
of [27] is equivalent to:

Lemma 3.4. Let G be the group with presentation:

Generators:
a, b, c, d;

Relations:
a2 = b2 = c2 = d2 = 1;
(ab)3 = (ac)3 = (ad)3 = (bc)3 = (bd)3 = (cd)3 = 1;
(abac)3 = (abad)3 = (acad)3 = (bcbd)3 = 1;
(abacdc)3 = (acabdb)3 = (adabcb)3 = 1.

Then G has order 310 × 2, and aG = {a, b, c, d}G contains 81 elements of
order two, the product of any two of these having order three.

The center of the presented group G is elementary abelian of order 33,
and G/Z(G) is a copy of the three generator Burnside group of exponent
3 and order 37, extended by an automorphism of order 2 inverting each
generator. (See [26, Theorem 18.2.1].)

Soon after this, Bruck noticed [28] that Hall triple systems are equivalent
to commutative Moufang loops of exponent 3. The 81 points of Hall's
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example � the 81 elements of order two in the group of the proposition �
naturally support the smallest such nonassociative loop.

At roughly the same time, Fischer [10] was studying the multiplication
groups of distributive quasigroups and encountered exactly the same group
theoretic problem that Hall did. (Again see Section 4.3.) Every distributive
quasigroup is isotopic to a commutative Moufang loop [40, V.2.10].

Of course the elements of order 2 in Sym(3) are transpositions (2-cycles).
Fischer began a program initially designed to characterize arbitrary sym-
metric groups by properties of their transposition class [11, 12]. This cul-
minated in Fischer's de�nition and classi�cation of 3-transposition groups.

A conjugacy class D of elements of order 2 in the group G is a class of
3-transpositions provided that, for d, e ∈ D, the order |de| is always one of
1, 2, or 3. The case in which 2 never occurs is the one considered by Hall.
The more general groups of Fischer still come from axis-free central auto-
morphisms of certain triple systems. Buekenhout [6] called these Fischer
spaces, and they are characterized by the axiom:

every pair of intersecting lines sits in a subspace that is either
an a�ne plane over F3 or a dual a�ne plane over F2.

Fischer spaces are always partial linear spaces but in general not linear
spaces, since the dual a�ne plane over F2 consists of six points, each on
two of its four lines. The Fischer spaces that are linear spaces are those in
which only a�ne planes over F3 occur � these are precisely the Hall triple
systems.

Fischer [13] characterized the �nite groups that are generated by a con-
jugacy class of 3-transpositions and additionally have no nontrivial normal
solvable subgroup. The groups studied by Hall do not occur, as they all
have nontrivial normal 3-subgroups. Again the transpositions of the sym-
metric group (of degree at least 5) are the motivating examples, but there
are others. In particular, the symmetry classes of orthogonal groups over F2

and F3 give two further in�nite families of examples. In Fischer's theorem
the groups of the conclusion fall into �ve in�nite families (the three already
mentioned, symplectic groups over F2, and unitary groups over F4) and �ve
isolated examples. A particular special case of his result is

Theorem 3.5. Let G be a �nite group generated by the conjugacy class
D of 3-transpositions. Assume that G has no nontrivial normal solvable
subgroups and additionally that G′ is not simple. Then G is isomorphic to
either PΩ+

8 (2)oSym(3) or PΩ+
8 (3)oSym(3).
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The author has studied groups generated by 3-transpositions extensively,
particularly in work with Cuypers [8]. His interest was drawn to the conclu-
sions of the previous theorem. These two groups are special cases of Cartan's
triality groups [7] which come about as subgroups of automorphism groups
of the Lie-type groups of type D4 (that is, hyperbolic orthogonal groups in
dimension 8).

Their study leads to the following de�nition, in the spirit of Fischer,
of certain group generated by a conjugacy class of elements of order 2 for
which the order of many (but not all) of the pair products is speci�ed,
indeed required to be 3.

De�nition 3.6. Let D be a conjugacy class of elements of order two in the
group G = 〈D〉, and let π : G −→ Sym(3) be a surjective group homomor-
phism. Further assume that

(∗) for all d, e ∈ D, if π(d) 6= π(e), then |de| = 3.

Then we say that (G, D, π) is a group with triality or triality group.

The primary examples here are Cartan's triality groups PΩ+
8 (F )oSym(3),

now de�ned over arbitrary �elds F , not just those of order 2 and 3. But
there are many other examples as well. For instance, the transposition class
of every wreath product H o Sym(3) gives rise to a group with triality, as
noted by Doro [9] and Zara [49].

Cartan observed a connection between his triality groups and the oc-
tonions. We shall learn that general groups with triality are related to
Moufang loops. The wreath product example of the previous paragraph
corresponds to the group H, groups being special examples of Moufang
loops.

The original de�nition of abstract triality for groups, which is somewhat
di�erent from the one used here, was given by Doro [9] who had been
motiviated by Glauberman's work on Moufang loops [17]. Tits [47] also
considered an abstract version of Cartan's triality.

We shall see in the next section that, as is the case with 3-transposition
groups, groups with triality arise as groups generated by central automor-
phism of certain triple systems.

3.3. Latin square designs

A Latin square design is a triple system (partial linear space with three
points on each line) (P,L) with the property that �noncollinearity� is an
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equivalence relation having exactly three equivalence classes, the �bers of
the design. That is, P = OR ] OC ] OE (disjoint union), and every line
of L contains exactly one point from each �ber OX for X ∈ {R,C, E}.
Furthermore, for every pair of points x, y from di�erent �bers, there is a
unique line ` = {x, y, z} ∈ L.

By considering the lines through a �xed point we see that the three �bers
have the same cardinality, the order of the Latin square design. Therefore
for a set O of the appropriate cardinality, we can view the �bers as three
subscripted copies of O. A Latin square design is degenerate precisely when
it has order |O| = 1.

Again considering the lines through a �xed point, we see that a subspace
(subdesign) containing all lines on a given point �rst contains the comple-
ment of that point's �ber and then contains that �ber as well. Therefore
Latin square designs are always shallow. In particular, Proposition 3.3 on
central automorphisms holds for every Latin square design.

As the �bers are the equivalence classes under noncollinearity, every
automorphism must permute the set of �bers. A central automorphism τa

of the Latin square design (P,L) switches the two �bers that complement
the �ber OX containing a. In particular, τa must be a-axis-free. Since every
line of L contains two points of the complement to OX , the permutation
induced on the line set L by τa is uniquely determined. The existence
question is then whether or not the action of τa can be de�ned on the
remaining points of the �ber OX to be consistent with this action on the
lines.

A Latin square design is a central Latin square design if it admits a
central automorphism at each of its points.

A basic observation is that quasigroups (and in particular Moufang
loops) and groups with triality both lead naturally to Latin square designs.

Given the group with triality (G, D, π), we form a partial linear space
(P,L) = (G, D, π)C with point set P = D and whose lines are the various
triples of elements of D in a subgroup S ' Sym(3) generated by members of
D and having π(S) = Sym(3). Then (P,L) = (G, D, π)C is a Latin square
design whose �bers are the three sets

D ∩ π−1((2, 3)), D ∩ π−1((1, 3)), D ∩ π−1((1, 2)) .

G acts naturally by conjugation on (P,L), the kernel of the action being
Z(G), the center of G. The design (P,L) = (G, D, π)C is in fact a central
Latin square design, since each element d ∈ D acts canonically on (P,L) as
the central automorphism τd with center d.



Central automorphisms, Z∗-theorems, and loop structure 81

On the other hand, let (P,L) be a central Latin square design with
P = OR]OC]OE . Set D = { τx | x ∈ P } and G = 〈D〉, a normal subgroup
of Aut(P,L). Further de�ne the homomorphism π = π(P,L) : G −→ Sym(3)
to extend the map

τx 7→


(2, 3) for x ∈ OR

(1, 3) for x ∈ OC

(1, 2) for x ∈ OE

Then (G, D, π) = (P,L)A is a group with triality by Proposition 3.3.
It is reasonably clear that (P,L)AC and (P,L) are isomorphic Latin

square designs.
For the loop L = (L, ·) we let (P,L) = LT be the Latin square design

with point set P = LR ] LC ] LE and line set L given by the Cayley table
of L:

{aR, bC , cE} ∈ L ⇐⇒ a · b = c .

The autotopism group of L can be identi�ed with the normal subgroup of
automorphisms of LT that acts trivially on the set of �bers.

Unlike the situation above, every Latin square design is isomorphic to
one constructed in this manner. Indeed there is a natural inverse map S
to T. Let (P,L) be a Latin square design with I a line of L. We identify
(P,L) with an isomorphic Latin square design by renaming the members
of it point set P = OR ] OC ] OE . First relabel the elements of OE as
LE = {xE | x ∈ L } for a set L (in bijection with O) with 1 ∈ L so that
1E = I ∩ LE . Next we let I = {1R, 1C , 1E} and, more generally, for each
x ∈ L, rename the points xR ∈ LR and xC ∈ LC according to

{xR, 1C , xE}, {1R, xC , xE} ∈ L .

We can now de�ne on L the structure (L, ◦) whose binary operation is given
by

{xR, yC , (x ◦ y)E} ∈ L .

As (P,L) is a Latin square design, (L, ◦) is in fact a loop with identity
element 1. We set (L, ◦) = (P,L)S.

It is reasonably clear that (P,L)ST and (P,L) are isomorphic Latin
square designs, while (L, ·)TS and (L, ·) are isotopic loops. In particular
isomorphic Latin square designs correspond to isotopic loops.

We see here how Latin square designs get their name. If we use the
same set L to label the rows and columns and to serve as entries in a Latin
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square, then the triple {xR, yC , zE} in the corresponding Latin square design
indicates that the entry in the row x, column y position of the square is z.
Every Latin square design can be thought of as coming from a Latin square
in this fashion.

The dual of a Latin square design is a 3-net (sometimes 3-web). This
was the preferred realm for Bol [3] and others. In this context, the members
of L can be thought of as the points of a con�guration within a 3-space L3

�coordinatized� by L. The line set of the 3-net is naturally partitioned into
three parallel classes of lines given by the �bers. In this dual world of 3-nets,
a central automorphism is usually called a Bol re�ection [16]. The action of
a putative Bol re�ection on the points of the 3-net (that is, the lines of L)
is evident, and the question is whether or not this induces a permutation
of the lines of the 3-net (the points of P).

Every Latin square design can be realized as (L, ·)T for some loop.
Following the theorems of Section 3.1, we can consider how the existence of
central automorphisms/Bol re�ections is related to algebraic properties of
the coordinatizing loop.

3.4. Central automorphisms of Latin square designs

Much of the material of the present section was discussed at length in the
earlier paper [22]. The treatment here is therefore abbreviated, with many
of the results and proofs taken from [22] (sometimes in a slightly modi�ed
form).

To simplify notation, for each a ∈ L we will write ρa in place of τaR ;
κa in place of τaC ; and εa in place of τaE . (This notation indicates that
the central automorphism has center corresponding to, respectively, a row,
column, or entry of the associated Latin square.)

Lemma 3.7.

(a) κ1 ∈ Aut(LT) if and only if L has the right inverse property (xy)(−1y)
= x for all x, y ∈ L. In this case inverses are two-sided and xκ1

C = x−1
C .

(b) ρ1 ∈ Aut(LT) if and only if L has the left inverse property x−1(xy)
= y for all x, y ∈ L. In this case inverses are two-sided and xρ1

R = x−1
R .

(c) ε1 ∈ Aut(LT) if and only if L has the anti-automorphic inverse pro-
perty (xy)−1 = y−1x−1 for all x, y ∈ L. In this case inverses are
two-sided and xε1

E = x−1
E .
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Proof. We prove (a); the other parts are equivalent to (a) in suitable con-
jugates of the loop L.

Assume that κ1 is an automorphism of LT, and let x, y ∈ L. The two
lines {xR, 1C , xE} and {xyR, 1C , xyE} are mapped to themselves by κ1.
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The image of the line {xR, yC , xyE} under κ1 is then the line

{xκ1
R , yκ1

C , xyκ1
E } = {xE , yκ1

C , xyR} = {xyR, yκ1
C , xE} .

In the special case x = 1, this line is {yR, yκ1
C , 1E}. As {yR, (−1y)C , 1E}

is always a line, we must have yκ1
C = (−1y)C . Repeating this twice we

�nd yC = yκ1
C

κ1 = (−1(−1y))C . In particular y = −1(−1y), so inverses are
two-sided.

Therefore in the general case the image line becomes {xyR, y−1
C , xE}.

But {xyR, y−1
C , (xy)y−1

E } is certainly a line of L. We conclude that x =
(xy)y−1, the right inverse property.

Now assume that L has the right inverse property. In particular, inverses
are two-sided (as seen in Section 2). The line {xR, yC , xyE} is generic in
L, and the picture above shows that its image under κ1 is also a line (with
the image of yC under κ1 de�ned to be y−1

C ). Therefore this κ1 is a central
automorphism of LT.

In particular, if ρ1 and κ1 are automorphisms, then so is ε1 ∈ 〈ρ1, κ1〉 '
Sym(3) (by Proposition 3.3 or direct calculation). Since Sym(3) is generated
by any two of its elements of order 2, any two of the properties discussed in
the lemma guarantee the third. Especially the loop is an inverse property
loop.
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A calculation (see [22, Prop. 3.3]) similar to that of the previous lemma
gives

Proposition 3.8. Let L be a loop with κ1 ∈ Aut(LT). Then, for the
element x of L, we have κx ∈ Aut(LT) if and only if we have

a((xb)x) = ((ax)b)x

for all a, b in L. In this case yκx
C = (xy−1)xC for all y in L.

Therefore we immediately have

Theorem 3.9. The loop L is a Bol loop if and only if κx ∈ Aut(LT) for
all x of L.

Recall our convention that Bol loops are right Bol loops.
Isotopic loops correspond to isomorphic Latin square designs, hence we

also have the following well-known result (see [40, IV.6.15]).

Theorem 3.10. All loop isotopes of a Bol loop are Bol loops. �

For x in the loop L, de�ne powers of x recursively by

x0 = 1, xn = (xn−1)x, and x−n = (x−1)n for n ∈ Z+ .

The order of x, written |x|, is the smallest positive integer n (if any) with
xn = 1. Otherwise x has in�nite order.

The following lemma will be important later, so we repeat its proof from
[22, Lemma 3.9].

Lemma 3.11. Let L be a loop with κ1, κx ∈ Aut(LT) for some x of L.

(a) For arbitrary a ∈ L and integers i, j, we have (axi)(xj) = axi+j. In
particular xi+j = xixj and (xi)−1 = (x−1)i.

(b) κxn ∈ Aut(LT) and (κxκ1)n = κxnκ1. In particular |x| = |κxκ1|.

Proof. By Lemma 3.7 inverses are two-sided.
(a) We show that (a) follows from (b) (indeed from (b) with n ∈ {i, j, i+j}).
For arbitrary z with κz ∈ Aut(LT) and arbitrary a ∈ L, we have

(aR)κzκ1 = (azE)κ1 = azR .

Therefore

(axi+j)R = a
κ

xi+j κ1

R =a
(κxκ1)i+j

R =a
(κxκ1)i(κxκ1)j

R =a
(κxiκ1)(κ

xj κ1)

R =((axi)xj)R ,
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as claimed.
(b) For κz ∈ Aut(LT) and arbitrary y ∈ L we have yκz

C = (zy−1)zC

by Proposition 3.8. Therefore if κy ∈ Aut(LT) then by Proposition 3.3
κzκyκz = κ(zy−1)z. In particular κ1κyκ1 = κy−1 and (κyκ1)−1 = κ1κy =
κy−1κ1, so (b) for negative n follows from (b) for positive −n.

We prove κxn ∈ Aut(LT) and (κxκ1)n = κxnκ1 for nonnegative n by
induction, the result being clear for n = 0, 1. Let n > 1 and assume the
result for 0 6 k 6 n. Using the previous paragraph, induction, and (a) with
{i, j} = {1, n− 1}, we �nd

κxn+1κ1 = κxnxκ1

= κ(xxn−1)xκ1

= κxκ(xn−1)−1κxκ1

= κxκ1κxn−1κ1κxκ1

= κxκ1(κxκ1)n−1κxκ1

= (κxκ1)n+1 ,

as desired. As κx and κ1 are in Aut(LT), so is κxn+1 = (κxκ1)n+1κ1.

We have two well-known results (see [40, IV.6.6] and [15, Prop. 6.1]).

Corollary 3.12. Bol loops are power associative.

Corollary 3.13. In a Bol loop of �nite order, the order of every element
divides the order of the loop.

Proof. In a power associative loop, the powers of the element x form a cyclic
subgroup X of order |x|. By the �rst part of the lemma, the cosets aX all
have size |x| and partition the loop.

Another calculation (see now [22, Prop. 3.11]) similar to that of Lemma
3.7 leads to

Proposition 3.14. Let L be an inverse property loop. Then, for the element
x of L, we have εx ∈ Aut(LT) if and only if we have

(xa)(bx) = x((ab)x)

for all a, b in L. In this case (xy)x = x(yx) and yεx
E = x(y−1x)E, for all y

in L.
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Moufang loops are inverse property loops ([40, IV.1.4]). Therefore we get
a fundamental characterization of Moufang loops (see [22, Theorem 3.13]).

Theorem 3.15. The loop L is a Moufang loop if and only if the Latin
square design LT admits a central automorphism with center p, for each of
its points p.

Central automorphisms lead to elements of the autotopism group of the
associated loop. In proving Lemma 3.11 we observed

aκzκ1
R = (az)R = a

R(z)
R .

That is, κzκ1 acts as R(z) on LR. Similar calculations lead to part (a) of
the next proposition. Part (b) then follows by applying (a) in the opposite
loop.

Proposition 3.16. Let L be a loop.

(a) If κ1, κz ∈ Aut(LT) for some z of L, then

κ1κz = (R(z−1), L(z)R(z), R(z)) ∈ Sym(LR)× Sym(LC)× Sym(LE) .

(b) If ρ1, ρz ∈ Aut(LT) for some z of L, then

ρ1ρz = (R(z)L(z), L(z−1), L(z)) ∈ Sym(LR)×Sym(LC)×Sym(LE).

We thus have

Theorem 3.17.
(a) If L is a Bol loop, then the LT-automorphism group

〈κ1κz | z ∈ L 〉 = 〈κxκy | x, y ∈ L 〉

is an autotopism group that induces RMult(L) on the �bers LR and LE.

(b) If L is a Moufang loop, then the LT-automorphism group

〈 ρxρy, κxκy | x, y ∈ L 〉 = 〈 ρxρy, κxκy, εxεy | x, y ∈ L 〉

is an autotopism group of that induces Mult(L) on each of the �bers
LR, LC , and LE. �

This theorem (phrased in the dual language of 3-nets and their Bol
re�ections) was one of the main results of Funk and Nagy [16]. They went
on to explore many of its consequences, particularly for Bol loops.
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4. Some categories and category equivalence

A detailed treatment of the material presented in this section will appear
in [23]. The categorical basics can be found in [29].

4.1. Some categories

4.1.1. Loops

We let Loop be the category whose object class consists of all loops, the set
HomLoop(A,B) being that of all homotopisms from the loop A to the loop
B. The category Mouf is the full subcategory of Loop that consists of all
Moufang loops.

4.1.2. Latin square designs

We de�ne the category LSD whose object class consists of all Latin square
designs. If (P,L) and (P ′,L′) are Latin square designs (P = OR]OC ]OE

and P ′ = O′
R ]O′

C ]O′
E), then f = (α, β, γ) ∈ HomLSD((P,L), (P ′,L′)) is

a triple of maps

α : OR −→ O′
R , β : OC −→ O′

C , γ : OE −→ O′
E

with the property:

if (x, y, z) is a line of L, then (x, y, z)f = (xα, yβ, zγ) is a line of L0.

In particular the set (OR)α∪(OC)β∪(OE)γ carries a Latin square subdesign
of (P ′,L′). If any of α, β, or γ are injections then they all are; in this case
we say that f is injective.

Let CLSD be the full subcategory of LSD consisting of the central Latin
square designs, those Latin square designs that admit a central automor-
phism at every point.

In these categories the morphisms are required to respect the �ber
names: �rows� are mapped to �rows� and so forth. In particular, cen-
tral automorphisms of (P,L) are not in the category automorphism group
AutLSD(P,L) as they interchange two �bers. Indeed for a central Latin
square design, the automorphism group Aut(P,L) induces the full Sym(3)
on the set of �bers, and we have Aut(P,L) = AutCLSD(P,L) o I, where
I = 〈τx, τy〉 ' Sym(3), for any x and y from di�erent �bers.

4.1.3. Groups with triality

If (G, D, π) and (G0, D0, π0) are two groups with triality, then a triality
homomorphism f : (G, D, π) −→ (G0, D0, π0) is a group homomorphism
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f : G −→ G0 that additionally has Df ⊆ D0 and π = fπ0. We then have
the category TriGrp whose object class is all groups with triality and whose
morphisms are the triality homomorphisms.

The kernel of the triality homomorphism f is a normal subgroup N of G
that is contained in ker π. Conversely, for any such normal subgroup N , the
quotient Ḡ = G/N has a natural structure (Ḡ, D̄, π̄) as group with triality.

4.1.4. Terminal objects and pointed categories

A terminal object in the category C is an object I for which HomC(A, I) has
cardinality 1 for every object A. A initial object has the same requirement
with the roles of A and I reversed, and a zero object is one that is both
terminal and initial. In all three cases, if such an object exists then it is
unique up to isomorphism in C.

Each of our categories Loop, Mouf, LSD, CLSD, and TriGrp has terminal
objects. In the �rst four cases, these are just the objects of order 1. In
TriGrp the group with triality (Sym(3), {(2, 3), (1, 3), (1, 2)}, IdSym(3)) is a
terminal object.

There is a uniform technique for promoting a terminal object in a cat-
egory to zero object status in a new category: replace C with the pointed
category C?, whose objects are all pairs (A, a) for A an object of C and a
a C-morphism from the terminal object I to A. Morphisms in C? are then
de�ned in terms of appropriate commutative diagrams from C.

For LSD? and CLSD? this amounts to choosing particular lines of the
designs and then requiring morphisms to respect these special lines. For
TriGrp? we similarly choose and respect special subgroups I ' Sym(3). In a
sense made speci�c in [23], Doro's approach to abstract triality [9] is focused
on the category TriGrp? rather than our focal point TriGrp.

Something similar happens for the two loop categories, but it is better
(and equivalent) to think of the two pointed categories Loop? and Mouf? as
having the same object classes as Loop and Mouf but allowing as morphisms
only loop homomorphisms.

4.2. Category equivalence

The maps T and S that were introduced in Section above are in fact
functors between the appropriate categories, once their natural action on
morphisms has been noted. By Theorem 3.15 these functors, which connect
the two categories Loop and LSD, restrict to functors between Mouf and
CLSD. The discussion of Section 3.3 can be formalized to produce



Central automorphisms, Z∗-theorems, and loop structure 89

Theorem 4.1. The pair (T,S) gives a category equivalence of Loop and
LSD that restricts to a category equivalence of Mouf and CLSD.

That is, in a precise way, loops and Latin square designs are the same
thing, an observation we have already made loosely. Similarly Moufang
loops and central Latin square designs are the same thing � this is the
essential content of Theorem 3.15.

The two other maps de�ned in Section 3.3 connect central Latin square
designs and groups with triality, as indicated:

Mouf CLSD TriGrp�
-

�
-T

S

A

C

Unfortunately the pair (A,C) does not give a category equivalence, despite
the fact that AC takes central Latin square designs to isomorphic designs,
as was observed.

The di�culty is two-fold � the category TriGrp is too large and the map
A is not a functor � but both di�culties have the same source: proper
treatment of the centers of groups with triality.

As a group with triality is de�ned in terms of its action by conjugation on
one of its conjugacy classes, the center of the group is relatively hidden. The
groups (P,L)A have trivial center, since any automorphism that commutes
with the central automorphism τp must �x the center p. All groups with
triality in the image of A have trivial center, whereas to guarantee that
morphisms behave properly, when moved from CLSD to TriGrp, we must
admit triality groups with nontrivial center.

The answer is to restrict to triality groups with centers as large as pos-
sible and to replace the map A with a functor B whose object images are
in the corresponding subclass of groups with triality. Two similar group
presentations accomplish this.

Presentation 4.2. For a group with triality (G, D, π), the group GU has
the following presentation:

Generators:
d̃, for arbitrary d ∈ D;

Relations:
for arbitrary d, e ∈ D with dπ 6= eπ:

(1) d̃2 = 1;
(2) d̃ẽd̃ = d̃ed.

In this situation we set DU = { d̃ | d ∈ D } and πU(d̃) = π(d).
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Theorem 4.3.

(a) For a group with triality (G, D, π) the triple (GU, DU, πU) is also a
group with triality.

(b) There is a surjective triality homomorphism ζ from (GU, DU, πU) to
(G, D, π) whose kernel is central in GU. If ϕ is a surjective triality
homomorphism from (G0, D0, π0) to (G, D, π) with ker ϕ central in G0,
then ζ factors through ϕ; that is, there is a unique triality homomor-
phism η from (GU, DU, πU) to (G0, D0, π0) with ζ = ηϕ.

This is not a surprise: in the presentation, the various d̃ are legislated
to form a generating class of elements of order 2, subject only to those
relations (all conjugations) that reveal (G, D, π) as a group with triality.

Part (b) of the theorem says that the group with triality (GU, DU, πU)
is a universal central extension of (G, D, π) in the category of groups with
triality. (The concepts �surjective� and �central kernel� are not categorical
but can be made so in this context [23].) This is particularly satisfying
since, in the category of groups, only perfect groups H possess universal
central extensions [1, (33.4)]. Existence for the perfect group H is proven
via a presentation that encodes the full Cayley table of H. Here we only
need to encode the transform table for the conjugacy class D of (G, D, π),
so the presentation is simpler and the construction works in all cases.

Accordingly, we call (GU, DU, πU) a universal group with triality, and
we let UTriGrp be the full subcategory of TriGrp consisting of all universal
groups. Set (GU, DU, πU) = (G, D, π)U. Then the map U is a functor from
TriGrp to its universal subcategory UTriGrp.

Presentation 4.4. For the Latin square design (P,L) in CLSD, the group
G(P,L) has the following presentation:

Generators:
p̃, for arbitrary p ∈ P;

Relations:
for arbitrary p ∈ P and {p, q, r} ∈ L:

(1) p̃2 = 1;
(2) p̃q̃p̃ = r̃.

In this situation we set P̃ = { p̃ | p ∈ P } and π(P,L)(p̃) = π(P,L)(p).

The triple (G(P,L), P̃, π(P,L)) is another group with triality that is uni-
versal. Indeed it is reasonably clear that U = CB for the functor B given
by (P,L)B = (G(P,L), P̃, π(P,L)) .
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Now

Mouf CLSD UTriGrp�
-

�
-T

S

B

C

gives the equivalences needed for a proof of:

Theorem 4.5. The categories Mouf, CLSD, and UTriGrp are equivalent.

This in turn leads to the equivalence of the corresponding pointed categories
Mouf?, CLSD?, and UTriGrp?.

The distinction between the categories TriGrp and UTriGrp is important.
These two categories are not equivalent [23], so the category TriGrp is not
equivalent to either Mouf or CLSD.

4.3. Monics and simplicity

The morphism f ∈ HomC(A,B) is called monic if it is right cancellable:

for all Z and g1, g2 ∈ HomC(Z,A), g1f = g2f =⇒ g1 = g2 .

Category equivalences take monic morphisms to monic morphisms.
Monic maps are the categorical counterparts of injective maps. In sev-

eral of our categories, monic maps behave as expected.

Lemma 4.6. In Mouf, Mouf?, CLSD, and CLSD? a morphism is monic if
and only if it is injective on the appropriate underlying set.

In the triality categories things are slightly more subtle.

Lemma 4.7. In TriGrp and TriGrp? a triality homomorphism from G is
monic if and only if its kernel is central in G.

There seems to be no accepted de�nition for simplicity of an object
in a general category. In a category with terminal objects we say that a
morphism is trivial if it factors through a terminal object. Then we say that
a nonterminal object is simple if every morphism from it is either monic or
trivial. Category equivalences take simple objects to simple objects.

Recall from Section 2 that the subloop M of the loop L is normal if
there is a loop homomorphism with kernel M , and the nonidentity loop L
is simple if its only normal subloops are the identity and itself.
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Proposition 4.8. Let L be a Moufang loop. The following are equivalent:

(1) L is simple in Mouf.

(2) L is simple in Mouf?.

(3) L is simple.

The group with triality (G, D, π) with G 6' Sym(3) is triality quasisimple
provided the only normal subgroups of G properly contained in ker π are
the subgroups of Z(G). Similarly (G, D, π) is triality simple provided it is
triality quasisimple with Z(G) = 1.

Proposition 4.9. Let (G, D, π) be a group with triality in UTriGrp. Let
(Ḡ, D̄, π̄) be the associated group with triality for Ḡ = G/Z(G). The follow-
ing are equivalent:

(1) (G, D, π) is simple in UTriGrp.

(2) (G, D, π) is simple in TriGrp.

(3) (G, D, π) is triality quasisimple.

(4) (Ḡ, D̄, π̄) is triality simple.

5. Z∗-theorems

In the group G the largest normal subgroup of odd order is denoted O(G),
and then Z∗(G) is the preimage in G of Z(G/O(G)). If p is a prime, then
Op(G) is the largest normal p-group in G, and Z∗p(G) is the preimage in G
of Z(G/Op(G)).

We present three related results, all stating that a given element of order
2 is in Z∗(G).

5.1. Dihedral groups

In a group an involution is an element of order 2.
We start with one of the most important results in �nite group theory:

Lemma 5.1. Two involutions s, t generate a dihedral group T = 〈s, t〉 with
normal cyclic subgroup N = 〈st〉 of index 2. �

We will need more detailed structure.

Lemma 5.2. Continue as in Lemma 5.1.
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(a) sT = sN and tT = tN ; T \N = sT∪tT is composed of involutions, each of
which inverts N ; that is, for a ∈ T \N and x ∈ N, a−1xa = axa = x−1.

(b) If |N | = n is odd, then T \ N = sT = tT . In particular, s and t are
conjugate in T .

(c) If |N | is not odd, then T \N = sT ] tT is the disjoint union of sT and
tT , and T contains exactly two dihedral subgroups of index 2, namely
〈(st)2〉 ∪ sT and 〈(st)2〉 ∪ tT .

(d) If |N | = 2m with m odd, then for each x ∈ tT , CT (x) = {1, x, a, ax} '
Z2×Z2 with a ∈ sT and Z(T ) = 〈ax〉 ' Z2.

Note that in Lemma 5.2(c) we allow the possibility that N is an in�nite
cyclic subgroup.

5.2. The Z∗-theorems

Consider the following hypotheses:

(G) D is a conjugacy class of involutions in the �nite group G such
that |de| is odd, for all d, e ∈ D.

(Fp) D is a conjugacy class of involutions in the �nite group G such
that |de| is a power of the odd prime p, for all d, e ∈ D.

We then have:

Theorem 5.3. (Glauberman's Z∗-theorem, 1966)
Under (G) we have D ⊂ O(G)〈d〉 6 Z∗(G) for any d ∈ D.

Theorem 5.4. (Fischer's Z∗-theorem, 1964)
Under (Fp) we have D ⊂ Op(G)〈d〉 6 Z∗p(G) for any d ∈ D.

Theorem 5.5. (Bruck-Hall Z∗-theorem, 1960/1965)
Under (F3) we have D ⊂ O3(G)〈d〉 6 Z∗3(G) for any d ∈ D.

Glauberman's Z∗-theorem [18] originated with his work on the solvabil-
ity of Moufang loops of odd order and later became a crucial tool in the
classi�cation of �nite simple groups.

Fischer's Z∗-theorem [10], particularly in the case p = 3, was an im-
portant step in his proof that the multiplication group of a distributive
quasigroup is solvable. This led to his work on 3-transposition groups [13],
which was also a critical part of the classi�cation of �nite simple groups.
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The Bruck-Hall Z∗-theorem [28] was motivated by Hall's work on Steiner
triple systems admitting axis-free central automorphisms at each point [27].
Bruck pointed out that the problem was equivalent to that of commutative
Moufang loops of exponent 3 and as such was a consequence of his (and
Slaby's) work in [5].

Clearly the Bruck-Hall theorem is contained in Fischer's. Also Fischer's
theorem is an easy consequence of Glauberman's. (See Remark 5.14 below.)
We separate them in this way not just for historical reasons but also because
the level of di�culty varies. Glauberman's theorem, the newest of the three,
is the hardest to prove, while the Bruck-Hall theorem, in some sense the
oldest, is the easiest to prove.

Glauberman's original proof of the Z∗-theorem is still the only known
proof and makes elegant use of the modular representation theory of �nite
groups. The Hall-Bruck theorem admits a totally elementary proof, needing
only Hall's Lemma 3.4 above and the group theoretic �Baer's Lemma� [31,
6.76]. (See [20] for the details of this argument.)

Fischer's theorem is nearly elementary. The only nonelementary result
he requires is also needed by Glauberman.

Theorem 5.6. (Brauer-Suzuki Theorem, 1959 [4, 19])
A �nite group G with generalized quaternion Sylow 2-subgroups has a unique
conjugacy class of involutions D. For this class the hypothesis (G) is valid
and Theorem 5.3 holds.

Brauer and Suzuki's proof (as augmented by Glauberman) was the sem-
inal example of the method of exceptional characters in ordinary represen-
tation theory.

5.3. Fischer's Z∗-theorem

We present a complete (modulo the Brauer-Suzuki Theorem 5.6) and some-
what streamlined version of Fischer's original proof of Theorem 5.4. In
certain parts of the argument, only the weaker hypothesis (G) of Glauber-
man is used.

Various of the intermediate results are true for in�nite groups as well,
but the ultimate result requires counting and so there is little insight into
the in�nite case.

Theorem 5.7. Let D be the unique class of involutions in the group G.
Under (G) Theorem 5.3 holds. Under (Fp), additionally |D| is a power of
the prime p.
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Proof. Let S be a Sylow 2-subgroup of G. Under (G), D ∩ S contains
exactly one element. As D is the only class of involutions in G, the 2-group
S contains a unique involution. It well known (see, for instance, [31, 5.3.7])
that such a �nite 2-group is either cyclic or generalized quaternion.

In any �nite group with cyclic Sylow 2-subgroup S = 〈s〉, the element s
acts as an odd permutation in the permutation representation of G on the
cosets of S. Therefore G has a normal subgroup of index 2, and by induction
G = O(G)S. In particular D ⊂ O(G)〈d〉, as required for Theorem 5.3.

If S is generalized quaternion, then D ⊂ O(G)〈d〉 by the Brauer-Suzuki
Theorem 5.6.

Now assume that D ⊂ O(G)〈d〉 = H and that (Fp) holds. Let R
be a Sylow r-subgroup of O(G) and H, for some odd r 6= p. Then by
Sylow's Theorem |H : NH(R)| = |O(G) : NO(G)(R)| is the number of Sylow
r-subgroups in H and O(G). As H is twice as big as O(G), also NH(R)
is twice as big as NO(G)(R); that is, it has even order and so contains

a conjugate dg of d (again by Sylow's Theorem). Replacing R by Rg−1
,

we have a Sylow r-subgroup R that is invariant under d. For x ∈ R,
x−1xd = dxd is in R and is a product of two elements of D. By (Fp), we
must have dxd = 1. That is, dx = d and x commutes with d. We conclude
that R commutes with d.

We now know that |CH(d)| is divisible by the p′-part of |O(G)|. That
is, |D| = |H : CH(d)| is a power of p.

Theorem 5.8. Under (G), for x an involution of G we have

D =
⊎

a∈CD(x)

CD(ax) .

That is, D is the disjoint union of the subsets of D commuting with the
various involutions ax, as a runs through the set of all elements of D that
commute with x.

Proof. If x ∈ D, then CD(x) = {x} (by (G)) and CD(xx) = CD(1) = D.
Therefore we may assume that x /∈ D.

For each d ∈ D, the subgroup T = 〈d, x〉 is dihedral. By Lemma 5.2(b)
the element dx has even order 2m as d and x are not conjugate. On the
other hand, (dx)2 = dxdx = ddx is a product of two conjugates of d and so
has odd order m.

Lemma 5.2(d) gives CT (x) = {1, x, a, ax} for involutions a ∈ D and
ax ∈ Z(T ). In particular d ∈ CD(ax) with a ∈ CD(x), so at least D is the
union of the appropriate subsets.



96 Jonathan I. Hall

To prove the union to be disjoint, consider an arbitrary b ∈ CD(x) with
d ∈ CD(bx). Then dbx = d, so db = dx and

T b = 〈d, x〉b = 〈db, xb〉 = 〈dx, x〉 = T .

As D ∩ T = dT has odd cardinality m (by Lemma 5.2(c)), the normalizing
element b must centralize some element of D ∩ T . But {b} = CD(b), so
b ∈ CT (x) ∩D = {a}. That is, b = a and the various subsets of the union
are indeed pairwise disjoint.

The rest of this section is devoted to our proof of Theorem 5.4. Accord-
ingly we let G have (Fp) throughout. The proof is by induction on |G|, the
case |G| = 2 being trivial.

Lemma 5.9. Let H be a subgroup of G with E = D∩H nonempty, and let
N be a normal subgroup of H not containing E. If (H,N) 6= (G, 1), then
in H̄ = H/N the set Ē is a conjugacy class contained in Op(H̄)〈ē〉, for all
e ∈ E.

Proof. By Lemmas 5.1 and 5.2(b) the two elements d, e of E are conjugate
in the dihedral group they generate. Therefore E is a conjugacy class in H
as is Ē in H̄. It inherits (Fp) from D, so by induction E ⊂ Op(H̄)〈ē〉 for
all e ∈ E.

Lemma 5.10. We may assume that Z(G) = 1.

Proof. Suppose that Z(G) 6= 1. Then by induction, in Ḡ = G/Z(G) the
class D̄ generates a subgroup P̄ 〈d̄〉 with d ∈ D and P̄ a normal p-subgroup
of Ḡ.

Let P be a Sylow p-subgroup of the preimage P0 of P̄ in G, so P0 =
Z(G)P . Especially P is the unique Sylow p-subgroup of the normal sub-
group P0, and hence P itself is normal in G.

In G̃ = G/P the image of P0 is the normal abelian group ˜Z(G)〈d〉. But
then 〈D̃〉 = 〈d̃〉. Therefore back in G we have 〈D〉 = P 〈d〉. In particular
D ⊂ Op(G)〈d〉 and Theorem 5.4 holds.

Lemma 5.11. |D| is a power of the prime p.

Proof. By Theorem 5.7 we already know this if D is the only class of invo-
lutions in G. Therefore we can assume that x is an involution of G that is
not in D.
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By the previous lemma Z(G) = 1, so H = 〈CD(x)〉 is a proper subgroup
of G. By induction, CD(x) is a conjugacy class of H with cardinality pi for
some integer i.

Furthermore H 6 CG(x) permutes the various sets CD(ax), for a from
the class CD(x), transitively by conjugation. In particular they all have the
same cardinality.

For a �xed but arbitrary a ∈ CD(x), we have 1 6= ax /∈ Z(G) as x /∈ D.
Therefore by induction in 〈CD(ax)〉 the conjugacy class CD(ax) has cardi-
nality pj , for some j that is independent of a by the previous paragraph.

By Theorem 5.8

|D| = |CD(x)| |CD(ax)| = pi · pj = pi+j ,

as desired.

Lemma 5.12. For each Sylow p-subgroup P and d ∈ D we have D = dP .

Proof. We have

|CG(d)P | = |CG(d)| |P |/|CG(d) ∩ P | > |CG(d)| |P |/|Q| = |CG(d)|p′ |P | ,

where Q is a Sylow p-subgroup of CG(d) containing CP (d) and |CG(d)|p′
is the p′-part of the order of CG(d). As |D| = |G : CG(d)|, Lemma 5.11
gives |CG(d)|p′ |P | = |G|. Therefore CG(d)P = G and D = dG = dCG(d)P =
dP .

Lemma 5.13. For d ∈ D there is a d-invariant Sylow p-subgroup P . There-
fore D ⊂ Op(G)〈d〉, and Theorem 5.4 holds.

Proof. As Z(G) = 1 we have D 6= {d}. Let e ∈ D \ {d}, so that 〈de〉 is a
nontrivial d-invariant p-subgroup of G. Now let P be a maximal d-invariant
p-subgroup with de ∈ P . We claim that P is a Sylow p-subgroup of G.

Set N = NG(P ). By induction, in N̄ = N/P the normal subgroup
〈D ∩N〉 is a normal p-subgroup R̄ extended by 〈d̄〉. The preimage R of
R̄ in N is a normal d-invariant p-subgroup containing P , so R = P by
maximality. That is, 〈D ∩N〉 = 〈d̄〉 is a normal subgroup of order 2 in N̄
and so is in Z(N̄).

Therefore for Q̄ a Sylow p-subgroup of N̄ , its preimage Q in N = NG(P )
is a Sylow p-subgroup that is again d-invariant. By maximality Q = P is a
Sylow p-subgroup of its own normalizer. But then (see [31, 5.1.3]) nilpotent
P must be a Sylow p-subgroup of G, as claimed.
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The normal subgroup 〈D〉 is 〈dP 〉 by Lemma 5.12 and is in P 〈d〉 by the
previous paragraph. Therefore 〈D〉 = S〈d〉 for some p-subgroup S of P that
is normal in G. In particular, D ⊂ S〈d〉 6 Op(G)〈d〉, as desired.

The lemma completes our proof of Theorem 5.4.

Remark 5.14. To deduce Fischer's Z∗-Theorem 5.4 from Glauberman's
Z∗-Theorem 5.3, argue as in the second half of the proof of Theorem 5.7 to
show that O(G)〈d〉 contains a d-invariant Sylow p-subgroup P and |D| is
a power of p. Then the arguments of Lemma 5.12 and the end of Lemma
5.13 prove that 〈D〉 6 P 〈d〉 hence D ⊂ Op(G)〈d〉.

This argument can be taken further to note, as Glauberman [17] does,
that if, for the involution class D, all the products |de| (for d, e ∈ D) have
order a π-number, for some set π of odd primes, then 〈D〉 is the extension
of a normal π-subgroup P by 〈d〉.

6. Applications to loop structure

The results of the previous sections can illuminate the structure of coordina-
tizing loops. Various of the results in this section are known, although some
appear to be new. Even for the known results the proofs here are elementary
(sometimes modulo one of the Z∗-theorems) and reasonably transparent.

6.1. Spectra of Bol loops

We start with three results that illustrate the gulf between Bol loops of odd
order and Bol loops of even order.

Theorem 6.1. (Kinyon, Wanless [30])
If a Bol loop has exponent three, then all its isotopes also have exponent
three.

Theorem 6.2. (Robinson [43])
If all isotopes of a Bol loop have exponent two, then the loop is an elementary
abelian 2-group.

Theorem 6.3. (Nagy [35], Baumeister and Stein [2])
There is a simple Bol loop of exponent two and order 96.

We give proofs of the �rst two theorems. The third theorem is more dif-
�cult, involving a delicate and lengthy construction. It will not be touched
here.
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The actual result [43, Cor. 3.2.1] proven by Robinson is more general
than the one given above as Theorem 6.2. The author thanks Michael
Kinyon for providing this reference and for suggesting the context of The-
orem 6.5 and its �rst corollary.

The spectrum of the loop L is the set of orders of the elements of L (as
de�ned in Section 3.4):

Spec(L) = { |x| | x ∈ L } .

The spectrum is particularly useful if L is power associative, as is the case
with Bol loops by Corollary 3.12. For instance, power associative loops have
two-sided inverses, so Cayley's trick of pairing an element with its inverse
shows that a �nite power associative loop has odd order if all its elements
have odd order.

From Lemma 3.11 we have immediately

Proposition 6.4. For the Bol loop L, Spec(L) = { |κxκ1| | x ∈ L } . �

A loop is said to be 2-divisible if every element is a square. This is
certainly true if every element generates a cyclic subgroup of odd order,
but there are other places where this can happen as well (for instance, in
the additive group of the rationals, where division by 2 is always possible
� hence the name). Thus in a power associative context, the class of 2-
divisible loops is an extension of the class of �nite loops of odd order.

Theorem 6.5. Let L be a 2-divisible Bol loop. Then all the central auto-
morphisms κx are conjugate by elements of AutLSD(LT).

Proof. It is enough to show that each κx is conjugate to κ1 by elements of
AutLSD(LT).

First suppose that |κxκ1| = |x| is odd. Then by Lemma 5.2(a,b), the
involutions κx and κ1 are conjugate in the dihedral subgroup 〈κ1, κxκ1〉
they generate, that conjugation achieved by some element of 〈κxκ1〉 6
AutLSD(LT).

Next suppose that |κxκ1| = |x| is not odd. Then by assumption, there
is a y with y2 = x. Consider the dihedral group T = 〈κy, κ1〉. Certainly
|y| = |κyκ1| is also not odd, so by Lemma 5.2(c) T has exactly two dihedral
subgroups containing (κyκ1)2 = κy2κ1 = κxκ1. (See Lemma 3.11 for the
�rst equality.) One of these is 〈κxκ1, κ1〉 = 〈κx, κ1〉. Again by Lemma
5.2(a,c), the involutions κx and κ1 of this subgroup are conjugate by some
element of 〈κyκ1〉 6 AutLSD(LT).
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Corollary 6.6. Let L be a 2-divisible Bol loop. Then Spec(L) is an isotopy
invariant.

Proof. Let (L, ·) and (R, ◦) be isotopic. Then the Latin square designs
(L, ·)T and (R, ◦)T are isomorphic. Furthermore, the induced isomorphism
ϕ of Aut((L, ·)T) and Aut((R, ◦)T) takes central automorphisms κx (x ∈ L)
to central automorphisms κy (y ∈ R) . Since all the central automorphisms
κx are conjugate by elements of AutLSD((L, ·)T), we can assume that κϕ

1L
=

κ1R . But then

Spec(L, ·) = { |κxκ1L | | x ∈ L } = { |(κxκ1L)ϕ| | x ∈ L }
= { |κϕ

xκϕ
1L
| | x ∈ L } = { |κyκ1R | | y ∈ R }

= Spec(R, ◦) ,

as desired.

As the exponent of a loop is the least common multiple of its spectrum,
we have immediately

Corollary 6.7. Let L be a Bol loop of odd exponent. Then the exponent is
an isotopy invariant.

The case of exponent three is Theorem 6.1 due to Kinyon and Wanless.

At the other end of the spectrum, we have

Lemma 6.8. Let L be a Bol loop. Then L has exponent two if and only if
κ1 commutes with all the central automorphisms κx of Aut(LT).

Proof. In a group, distinct elements of order 2 commute if and only if they
have product of order 2.

Thus in the situation of Theorem 6.2, the central automorphisms gener-
ate an elementary abelian 2-group. By Theorem 3.17 the group RMult(L) is
a homomorphic image and so is also an elementary abelian 2-group. Tran-
sitive abelian groups are regular, so Theorem 6.2 follows directly.

We return to �nite Bol loops with odd spectrum, which by Corollary
3.13 is equivalent to having odd order. The various Z∗-theorems of Section
5 become relevant.

Theorem 6.9. Let L be a �nite Bol loop with exponent a power of some
odd prime p.Then RMult(L) is a p-group. In particular |L| is a power of p.
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Proof. The group 〈κx | x ∈ L 〉 satis�es the hypotheses of Fischer's Z∗-
Theorem 5.4 and so the conclusions. Thus 〈κxκ1 | x ∈ L 〉 is a p-group
that has RMult(L) as an image by Theorem 3.17. The p-group RMult(L)
is transitive on L, so |L| divides its order.

In particular the �nite Bol loops of exponent three studied by Kinyon
and Wanless [30] all have order a power of three.

The theorem is known; see Foguel, Kinyon, and Phillips [15, Theo-
rem 6.7], where the authors extract from Glauberman [17] the correponding
result with p replaced by a set π of odd primes. The proof makes use of the
argument under Remark 5.14 in place of Fischer's Z∗-theorem.

Similarly Glauberman's Z∗-Theorem 5.3 gives Corollary 6.8 of [15]:

Proposition 6.10. If L is a �nite Bol loop of odd order, then RMult(L)
is of odd order, hence (by the Feit-Thompson Theorem) solvable. �

The Bol loops of Theorem 6.9 have nilpotent RMult(L) but need not
themselves be solvable, as an example of Foguel and Kinyon [14] demon-
strates. Equally well, Bol loops of odd order have solvable RMult(L) (as
just seen) but need not be solvable, as a simple Bol loop of order 1053 due
to Nagy [36] shows.

When we have access to the full multiplication group, such stronger re-
sults are possible. We have a result of Glauberman [17] (with what amounts
to his proof).

Theorem 6.11. A �nite Moufang loop with order a power of the odd prime
p is nilpotent.

Proof. By Corollary 3.13 all elements have order a power of the odd prime p.
By Theorem 3.15 and Fischer's Z∗-Theorem 5.4 each of the groups 〈 ρxρ1 |
x ∈ L 〉, 〈κxκ1 | x ∈ L 〉, and 〈 εxε1 | x ∈ L 〉 is a �nite p-group, and
they normalize each other. Thus by Theorem 3.17 the group Mult(L) is a
quotient of the p-group

〈 ρxρ1, κxκ1, εxε1 | x ∈ L 〉

and so is itself a p-group. In any nontrivial transitive permutation represen-
tation of a �nite p-group, the stabilizer of a point must �x more than one
point. Therefore the center of L is nontrivial, and induction takes over.

Finally we have the result that inspired most of this later work.
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Theorem 6.12. (Glauberman [17])
If L is a Moufang loop of odd order, then Mult(L) has odd order.

Proof. By Glauberman's Z∗-Theorem 5.3 each of the groups 〈 ρxρ1 | x ∈ L 〉,
〈κxκ1 | x ∈ L 〉, and 〈 εxε1 | x ∈ L 〉 has odd order, so the quotient Mult(L)
of the group they generate does as well.

By the Feit-Thompson Theorem the group Mult(L) of odd order is solv-
able, and Glauberman was led to the solvability of Moufang loops of odd
order.

6.2. Simple Moufang loops

In Section 4.3 we saw that every simple Moufang loop M is related to
a triality simple group, namely MTB modulo its center, that is, MTA.
There are only a few possibilities for such a group.

Theorem 6.13. (Doro [9], Nagy and Valsecchi [37])
Let (G, D, π) be triality simple, and let M be the associated Moufang loop
(G, D, π)CS. Then exactly one of:

(1) G ' (Z3×Z3) o Z2, and M is a cyclic group of order 3.
(2) G ' Z2

p oSym(3), and M is a cyclic group of order p, a prime not equal
to 3.

(3) G is isomorphic to the wreath product M oSym(3), and M is a nonabelian
simple group.

(4) H = ker π is a nonabelian simple group, and M is nonabelian, nonas-
sociative, and simple.

In particular nonassociative simple Moufang loops M are associated
with a group with trialityH oSym(3) for a nonabelian simple group H. By
Theorem 3.17 this simple group H is also the multiplication group of M.

All known examples of nonassociative simple Moufang loops come from
octonions. An octonion algebra O over the �eld F is an 8-dimensional
nonassociative but alternative F -algebra with identity on which there is a
nondegenerate quadratic form δ : O −→ F , the norm, that admits compo-
sition:

δ(a)δ(b) = δ(ab) ,

for all a, b ∈ O. See [44].
As Moufang observed, all octonion algebras satisfy the Moufang identity.

Therefore the loop of units (invertible elements) of an octonion algebra is a
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Moufang loop. As δ(1) = 1, in order for the element a of O to be invertible,
δ(a) must be nonzero; it turns out that this is also su�cient.

There are two basics types of octonion algebras. First are the division
algebras. These featured in Moufang's work on coordinatizing projective
planes, and their loop of units consists of all nonzero elements. In the
division algebra case, the quadratic form δ is anisotropic.

If, on the other hand, there are nonzero elements a with δ(a) = 0, then
in fact δ is a hyperbolic form. This is the split case, and O is uniquely
determined up to isomorphism by the �eld F . The split octonions over F
will be denoted Oct+(F ).

If in Oct+(F ) we take the Moufang loop SOct+(F ) of norm 1 elements
and factor out the center {±1}, then we have a simple loop PSOct+(F ),
called a Paige loop after Paige who �rst observed and proved simplicity [39].

We emphasize that, because of category equivalence and Propositions
4.8 and 4.9, simplicity of the loop and triality simplicity of a corresponding
group with triality are equivalent; it is not necessary to check both, as Paige
e�ectively did.

Let O be an octonion algebra, GOct(O) its loop of units, SOct(O) the
normal subloop of norm 1 elements, and PSOct(O) the quotient of that by
its center {±1}. It has been conjectured that every nonassociative simple
Moufang loop is isomorphic to PSOct(O) for some octonion algebra O.
Liebeck [32], using the classi�cation of �nite simple groups, con�rmed this
for �nite Moufang loops, as did the current author for locally �nite Moufang
loops [21].

Theorem 6.14. (Liebeck [32])
A �nite simple Moufang loop is either associative (and so a �nite simple
group) or is isomorphic to a Paige loop PSOct+(F ) over a �nite �eld F .

Liebeck searched the list of nonabelian �nite simple groups H, looking
for triality simple groups H o Sym(3). He proved that the only examples
are PΩ+

8 (F )oSym(3) over �nite �elds F . The associated loops are then the
Paige loops PSOct+(F ).

This last remark is equivalent to the statement that the multiplication
group of the Paige loop PSOct+(F ) is the simple group PΩ+

8 (F ). (For
simplicity, see [45, 11.48].) At an earlier workshop in this series, Nagy and
Vojt¥chovský [38] noted that this observation is �folklore� and is rarely (if
ever, before [38]) provided with a complete proof. Nagy and Vojt¥chovský
gave calculations that are complete.
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The material discussed here can be used to extend the proof from [38].
Consider the octonion algebra O as orthogonal space of dimension 8

over F admitting the nondegenerate quadratic form δ. The general or-
thogonal group GO(O) consists of the similarities, those invertible F -linear
transformations t of O with

δ(at) = µ(t)δ(a) ,

for all a ∈ O, where µ(t) ∈ E = F \ {0} is a multiplier that depends only
on t. The map µ taking t to µ(t) is a homomorphism from GO(O) to the
multiplicative group E of F . The kernel of µ is the full orthogonal group
O(O) � the similarities with multiplier µ(t) = 1. The center of GO(O)
consists of all nonzero scalar matrices, while the center of O(O) is {±1}.

Let (·, ·) be the symmetric bilinear form associated with the quadratic
form δ:

(a, b) = δ(a + b)− δ(a)− δ(b) .

For x in O with δ(x) 6= 0, we have the orthogonal symmetry

sx : a −→ a− (a, x)δ(x)−1x .

Replacing x by a nonzero scalar multiple does not change the symmetry.
By the Cartan-Dieudonné Theorem [45, 11.42], the orthogonal group O(O)
is generated by the symmetries. The rotation group RO(O) is the subgroup
of index two consisting of products of an even number of symmetries. The
group RGO(O) is the corresponding subgroup of index 2 in GO(O).

As the quadratic form δ admits composition, the subset

Nδ = { q(x) | x ∈ GOct(O) }

of E is actually a subgroup of E. We let RNO(O) be the subgroup of
RGO(O) consisting of rotational similarities with multiplier from the sub-
group Nδ.

The spinor norm is the homomorphism taking RO(O) to E/E2 and
given by ∏

i

sxi 7→
∏

i

δ(xi)E2 .

The group Ω(O) is the kernel of the spinor norm. Its normal subgroup Ω1(O)
is generated by all products s1 sx for δ(x) = 1 (equivalently δ(x) ∈ E2).

Theorem 6.15. Let O be an octonion algebra. The multiplication group of
GOct(O) is RNO(O), and the multiplication group of SOct(O) is a normal
subgroup of Ω(O) containing Ω1(O).
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We brie�y discuss the proof of this theorem.
As O is a composition algebra, for each x ∈ GOct(O)

δ(aL(x)) = δ(xa) = δ(x)δ(a) = δ(a)δ(x)
and

δ(aR(x)) = δ(ax) = δ(a)δ(x).

Therefore L(x) and R(x) are similarities with multiplier δ(x). These gen-
erate G = Mult(GOct(O)), which is thus a subgroup of RNO(O) with
µ(G) = Nδ. We must now determine G ∩O(O).

An easy calculation in O gives

y sx = −δ(yx−1) xy−1x ,

for all y ∈ GOct(O) (recall that O is diassociative), and hence

y s1 sx = δ(x)−1 xyx.

That is, the element L(x)R(x)L(δ(x))−1 of G induces the rotation s1 sx on
GOct(O). The full rotation group RO(O) is generated by such rotations,
so RO(O) 6 G ∩O(O).

If RO(O) < G ∩O(O), then the index is 2 and s1 ∈ G. By Proposition
3.14 the element ε1 of Aut(GOct(O)C) acts on the �ber GOct(O)E via
yε1

E = (y−1)E . Then by the above calculation and Theorem 3.17 there would
be a nontrivial automorphism of GOct(O)C acting on the �ber GOct(O)E

according to yE 7→ −δ(y)yE . This leads to a contradiction. We conclude
that RO(O) = G ∩O(O) and G = RNO(O), as claimed in the �rst part of
theorem.

We have a natural injection of SOct(O) into GOct(O), but this does
not guarantee an injection of its multiplication group into G. The injection
is, however, a monic map in the category Mouf by Lemma 4.6. Therefore
the category equivalence takes it to a monic map in the category UTriGrp.
By Lemma 4.7 this is a triality homomorphism whose kernel is central.
Therefore the subgroup S of G generated by the various L(x) and R(x)
with δ(x) = 1 is at worst a central extension of Mult(SOct(O)). For such
an x, the earlier calculations yield

y s1 sx = xyx = yL(x)R(x) ,

for all y ∈ GOct(O). Therefore S includes at least the normal subgroup
Ω1(O). This group is already irreducible on O, so all the center that S can
have is in {±1}. Especially S ' Mult(SOct(O)). It remains to prove that
each L(x) for δ(x) = 1 is within the spinor kernel Ω(O). This can be done
by direct calculation (as Nagy and Vojt¥chovský [38] do in the split case), or
by using Proposition 3.16 to show that the subgroup 〈ρ1, κ1, ε1〉 ' Sym(3)
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of Aut(GOct(O)C) leaves the subdesign SOct(O)C invariant and induces
an embedding of 〈L(x) | δ(x) = 1 〉 in Ω(O). This completes the theorem.

The center of the Moufang loop SOct(O) is {±1} of order at most
2. Thus the in�uence of the passage to PSOct(O) on the multiplication
group is easy to understand directly or through another appeal to cat-
egory equivalence. The normal structure of many of the groups Ω(O)
and their projective quotients PΩ(O) = Ω(O)/{±1} is well known [45].
For instance in the split case Ω(O) is quasisimple, so Ω(O) = Ω1(O) and
PΩ(O) = PΩ1(O) = PΩ+

8 (F ) is simple.
This returns us to the veri�cation due to Nagy and Vojt¥chovský [38].

Corollary 6.16. Mult(PSOct+(F )) = PΩ+
8 (F ). In particular Paige loops

are always simple, as PΩ+
8 (F ) is.

We also have two of Paige's original observations [39].

Corollary 6.17.

(a) Let O be the real compact octonions (the original Graves-Cayley octon-
ions). Then Mult(PSOct(O)) = PΩ(O), and in particular PSOct(O) is
simple, as PΩ(O) is.

(b) Let O1 be the real compact octonions tensored up to the �eld R((t)) of
Laurent polynomials. Then Mult(PSOct(O1)) = PΩ(O1), and in parti-
cular PSOct(O1) is not simple, as PΩ(O1) is not.
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