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1. Introduction

Let KV be a left vector space over the field K. The element g ∈ GLK(V ) is
finitary if V (g − 1) = [V, g] has finite K-dimension. This dimension is the degree
of g on V , degV g = dimK [V, g]. The invertible finitary linear transformations of V
form a normal subgroup FGLK(V ) of GLK(V ), and any subgroup of FGLK(V ) is
called a finitary linear group, obvious examples being the linear groups, subgroups of
GLK(V ) for finite dimensional V . We stretch this terminology further by referring
to any group which is isomorphic to a finitary linear group as a finitary group.
Similarly, a linear group is any group which is isomorphic to a subgroup of GLK(V ),
for some finite dimensional V .
The classification of locally finite simple groups of finitary linear transformations

to be discussed here is a natural successor toCFSG, the classification of finite simple
groups [?], and the work BBHST of Belyaev [?], Borovik [?], Hartley and Shute
[?], and Thomas [?] which classified the locally finite simple groups that are linear.

( 1.1 ) Theorem. (CFSG: Classification of finite simple groups.) Each
finite simple group is isomorphic to one of:
1. an alternating group Altn;
2. a classical linear group PSpn(q), PSUn(q), PΩ

6
n(q), or PSLn(q);

3. an exceptional group of Lie type E6(q), E7(q), E8(q), F4(q), G2(q),
2B2(q),

3D4(q),
2E6(q),

2F4(q), or
2G2(q);

4. one of 26 sporadic groups;
5. a cyclic group of prime order.

( 1.2 ) Theorem. (BBHST: Belyaev, Borovik, Hartley, Shute, Thomas.)
Each locally finite simple group which is not finite but has a faithful representation
as a linear group in finite dimension over a field is isomorphic to a Lie type group
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Φ(K), where K is an infinite, locally finite field, that is, an infinite subfield of Fp,
for some prime p.

( 1.3 ) Theorem. Each locally finite simple group which is not linear in finite
dimension but has a faithful representation as a finitary linear group over a field is
isomorphic to one of:
1. an alternating group AltΩ with Ω infinite;
2. a finitary symplectic group FSpK(V, s);
3. a finitary special unitary group FSUK(V, u);
4. a finitary orthogonal group FΩK(V, q);
5. a special transvection group TK(W,V ).

Here K is a (possibly finite) subfield of Fp, for some prime p; the forms s, u, and
q are nondegenerate on the infinite dimensional K-space V ; and W is a subspace of
the dual V T whose annihilator in V is trivial: 0 = {v ∈ V | vW = 0}.

This paper is devoted to a discussion of Theorem ?? and its proof [?]. The
characteristic 0 case of the theorem is to be found in [?], the only examples being
the alternating groups AltΩ. See Subsection ?? below and its Theorems ?? and ??.
The second section contains a detailed discussion of the examples in the conclu-

sion to the theorem since such intimate knowledge is needed for their reconstruction
in the proof. Particular attention is paid to the root elements of each group, these
being special elements of small degree from which the underlying geometry can be
recovered. Typical examples of root elements are the 3-cycles of an alternating group
and the transvections of a special linear group. The third section contains in turn
three subsections and introduces the general tools which are most important in the
proof. Its first subsection deals with Kegel covers and their properties, the most
crucial being the fact that every locally finite simple group can be glued together
out of finite simple groups in an appropriate manner. This observation is due to
Otto Kegel. Together with the classification of finite simple groups, it accounts for
the recent activity and progress in the classification theory of locally finite simple
groups.
The second part of Section 3 presents a theorem which is a linear version of an

old result of Jordan, who proved that a primitive permutation group of finite degree
which contains an element of small support must be alternating or symmetric. An
irreducible finitary group in infinite dimension can be thought of as a group generated
by elements of small degree. The linear version of Jordan’s theorem says that a
primitive linear group in finite dimension which is generated by elements of small
degree comes from a short list of groups each of which is highly geometric. The third
part of Section 3 deals with ultraproducts and specifically with a theorem, proved
using ultraproducts, which allows us to sew together local geometries, obtained
from the subgroups of a Kegel cover, into a global geometry which will ultimately
emerge as the classical geometry of the group at hand. This theorem is motivated
by Mal’cev’s Representation Theorem. (Since ultraproducts and the representation
theorem may not be familiar to many people, we have provided an introductory
appendix.)
The fourth section then contains the actual discussion of the proof of Theorem ??.

The basic outline is very simple. The general theory of Kegel covers tells us where
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to look for the internal subgroup geometry of the group. Our theorem of Jordan
type then implies that this internal geometry is as expected. Using ultraproducts,
we can build from the internal geometry an external geometry with the desired
local properties. We then identify this external geometry as the expected classical
geometry.
It now appears that, as hoped in [?, ?], the classification of locally finite simple

groups which are finitary linear has a natural place in the general theory of locally
finite simple groups. The nonfinitary groups exhibit certain “universal” behavior not
seen in the finitary groups. See the present articles by Belyaev [?] and Meierfranken-
feld [?] for precise statements and discussion along these lines. The classification
has also been used by Passman in his study of the semiprimitivity problem for group
algebras of locally finite groups [?, ?].
Our general references for group theory and the geometry of the classical groups

are the books of Aschbacher and Taylor [?, ?]. For an introduction to finitary linear
groups, there is no better reference than the present article by Phillips [?].

2. Examples

We discuss in some detail the conclusions to Theorem ??, that is, the infinite di-
mensional finitary classical groups including the infinite alternating groups. We pay
special attention to their generation by special kinds of elements of small degree
– transvections, Siegel elements, and 3-cycles – which encode group theoretically
much of the group’s natural geometry.

2.1. Alternating Groups

The group SymΩ is the group of all permutations of the point set Ω. We usually write
Symn for SymΩ when Ω = {1, 2, . . . , n}. The support of the permutation g ∈ SymΩ
is the subset of those points in Ω which are moved by g rather than fixed. The
finitary symmetric group, FSymΩ, is the normal subgroup of SymΩ containing all
permutations with finite support. (Other notation exists; this is the group Sym0(Ω)
of [?].) Clearly if Ω is finite then FSymΩ = SymΩ, but for infinite Ω this is false. It
is the case of infinite Ω which interests us here.
The finitary symmetric group FSymΩ is that subgroup of SymΩ which is gener-

ated by the class of 2-cycles and can be thought of as the union (or direct limit) of
its finite subgroups Sym∆, as ∆ ranges over the finite subsets of Ω. In particular, it
is locally finite. If it were possible to find an odd number of 2-cycles whose product
was the identity, this would be achieved within some subgroup Sym∆ with ∆ finite.
Since this can not be the case, the members of FSymΩ can be divided into odd and
even elements, as in the finite case. The normal subgroup of SymΩ consisting of all
even finitary permutations is the alternating group, AltΩ. It is the union of its finite
alternating subgroups Alt∆. In particular, it is locally finite and simple.
For any field K, consider the permutation module KΩ for AltΩ (and FSymΩ). If

the support of an element g contains t points of Ω in s distinct orbits, then the degree
of g on KΩ is t−s. Thus the module KΩ gives rise to a finitary linear representation
of AltΩ. (In particular, AltΩ is finitary in all characteristics, including 0.) On the
other hand, when Ω is infinite AltΩ contains p-groups of unbounded class for all



4 J.I. HALL

primes p, and so can not be linear in any characteristic. We thus have our first
example of a locally finite, finitary linear simple group which is not linear in any
finite dimension.
For alternating groups, the root elements will be the 3-cycles. These special

elements of order 3 have minimal support (size 3) and minimal degree (equal to 2)
in AltΩ. The following proposition should be thought of as saying that the geometry
of the underlying set Ω is embedded group theoretically in AltΩ via the class of
3-cycles.

( 2.1 ) Proposition. A subgroup of AltΩ which is generated by 3-cycles is a direct
product of natural, alternating subgroups AltΣ, for Σ ⊆ Ω.

Proof. Let G ≤ AltΩ be generated by 3-cycles, and let Σ be an orbit of G on
Ω. We need to show that G contains AltΣ.
For α,ω ∈ Σ, there is a set of 3-cycles t1, t2, . . . , tn in G (for some n) with α in

the support of t1, ω in the support of tn, and each pair ti, ti+1 having supports with
nontrivial intersection. Within �tn−1, tnX ≤ Alt5, we can find a 3-cycle t∗n−1 whose
support contains ω and meets the support of tn−2 nontrivially. This shortens the
path from α to ω; and, proceeding in this manner, we find a 3-cycle t of G which has
both α and ω in its support. If β is a third member of the orbit Σ, then similarly
we find a 3-cycle s of G whose support contains β and ω. Finally in �t, sX ≤ Alt5,
there is a 3-cycle of G whose support is α,β,ω. Thus all 3-cycles with support from
Σ belong to G, as desired. 2

( 2.2 ) Corollary. (See [?, (4.7)], [?, Theorem 3].) Let g ∈ Altn be an element
of odd prime order p which is composed of s disjoint p-cycles, where 2sp − 1 ≤ n.
Then Altn is generated by 2 + {(n− 2)/s(p− 1)Q conjugates of g.

Proof. An easy induction shows that, for each t ≥ 2, there are t conjugates of
g in Altn which generate a subgroup transitive on anything up to ts(p− 1) + 1 ≤ n
points. Therefore a subgroup of Altn with orbits of length n − 1 and 1 can be
generated by {(n − 2)/s(p − 1)Q conjugates of g, one of which can be g itself. One
more generates with these a doubly transitive hence primitive subgroup of Altn.
Now choose a conjugate h of g whose support intersects that of g in a set of size 1.
(This is possible as n ≥ 2sp − 1.) Then [g, h] is a 3-cycle. By the proposition, the
2 + {(n− 2)/s(p− 1)Q conjugates of g now selected must generate all of Altn. 2
2.2. Special Transvection Groups

The alternating and finitary symmetric groups mentioned above are finitary linear
over any field and are locally finite, but in general a finitary group need not be
locally finite. Indeed a slight modification to an old result of Schur says that a
finitary linear group is locally finite if and only if it is periodic. (See [?, ?, ?].)
Any subgroup of FGLK(V ) will be locally finite if the field K is locally finite,

that is, a subfield of the algebraic closure of some field of prime order, K ≤ Fp. To
see this, first note that any finite set Σ of such transformations generates a group
which acts faithfully on a finite dimensional subspace of V , and the matrices for Σ in
this action have only finitely many entries. These entries therefore generate a finite
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subfield F of locally finite K. That is, �ΣX is a subgroup of GLn(F ), for some finite
F ≤ K, and so is finite.
A transvection of GLK(V ) is a nonidentity element which is as close as possible

to being the identity. More precisely, a transvection t has (t−1)2 = 0 with the range
V (t − 1) of dimension 1. Choose a representative x of this range, V (t − 1) = �xX.
Then v )→ v(t− 1) = αx gives a linear functional ϕ: v )→ α such that xϕ = 0 (since
(t− 1)2 = 0).
The pair x,ϕ completely determines t; and, conversely, for any pair x ∈ V and

ϕ ∈ V T (the dual) with xϕ = 0, we have a transvection t = tϕ,x given by

v.tϕ,x = v + (vϕ)x .

The K-transvection subgroup T (�ϕX, �xX) is then the subgroup composed of the iden-
tity plus all transvections tϕ,αx = tϕα,x, as α runs through the nonzero elements of
the fieldK, and is isomorphic to the additive group ofK. For SLK(V ), the transvec-
tions are the root elements and the K-transvection subgroups are the corresponding
root subgroups.
The transvection t is finitary of degree 1 (by definition) and is unipotent since

(t− 1)2 = 0. In particular, if V has finite dimension then t has determinant 1. As it
has degree 1, the element t can act nontrivially in at most one H-composition factor
in V whenever t ∈ H ≤ GLK(V ). In particular, if H = �tHX, then H has at most
one nontrivial composition factor in V and so is unipotent-by-irreducible. The next
lemma contains a related and important geometric property of transvections.

( 2.3 ) Lemma. The transvection tϕ,x leaves invariant the subspace W ≤ V if and
only if either x ∈W or W ≤ kerϕ.
Proof. If W is not in kerϕ, there is a w ∈ W with w.tϕ,x W= w, whence W

contains
w.tϕ,x − w = w + wϕ.x− w = αx W= 0 . 2

If V = Kn is spanned by the canonical basis e1, . . . , en with dual basis e
T
1, . . . , e

T
n,

then the transvection teT
i
,αej is just the usual elementary matrix I+αei,j , where ei,j

is a matrix unit. Gaussian elimination proves:

( 2.4 ) Theorem. If dimK V is finite, then SLK(V ) is generated by its transvec-
tions.

For general V we define the finitary special linear group FSLK(V ) to be that
subgroup of GLK(V ) which is generated by all transvections tϕ,x, with ϕ ∈ V T, x ∈
V , and xϕ = 0. Because it is true in finite dimensions, we always have FSLK(V ) =
FGLK(V )

I, the derived group, excepting the usual small cases. (It is possible to
define a determinant function on FGLK(V ) because finitary transformations have
only finitely many eigenvalues not 1. The theorem then implies that the kernel of
the determinant homomorphism is FSLK(V ).

1)

1 Although any unipotent element could lay claim to having determinant 1, the determinant
function really only makes sense in the finitary context; so our notation is somewhat redundant.
We might better use SLK(V ) in place of FSLK(V ), just as we use AltΩ over the redundant FAltΩ.
We nevertheless prefer the notation FSLK(V ).
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If V has finite dimension, then V l V T and FSLK(V ) = SLK(V ). When V has
infinite dimension then V T has uncountably infinite dimension; and, in particular,
FSLK(V ) is uncountable. There is another finitary counterpart to the special linear
group which remains countable for countable V , the stable special linear group
SL0∞(K). This is best introduced in terms of matrices. Every k × k matrix Ak can
be extended to a k + 1 × k + 1 matrix Ak+1 by placing Ak in the upper lefthand
corner of Ak+1 and then bordering Ak with 0’s in Ak+1 except for a new diagonal 1:

Ak −→ Ak+1 =
Ak 0
0 1

.

This gives us natural embeddings

GL1(K)→ GL2(K)→ GL3(K)→ GL4(K)→ · · ·→ GLk(K)→ · · ·
The union of these groups is then the stable linear group GL0∞(K) and is countable
when K is, since it is the ascending union of countable groups.
The stable linear group has a natural finitary action on the K-space V spanned

by B = {e1, e2, . . . , ek, . . .}, where Bk = {e1, e2, . . . , ek} is the standard basis for
the natural module of GLk(K), for each k. Its derived subgroup (and determi-
nant 1 subgroup) is the stable special linear group SL0∞(K) = GL0∞(K)I and is the
corresponding ascending union of the subgroups SLk(K).
If we think of GLK(V ) as infinite matrices with respect to the basis B, then

GL0∞(K) is that finitary subgroup of matrices which differ from the identity only
within a finite number of rows and columns. In contrast, if A is an arbitrary matrix
of the finitary linear group FGLK(V ), then A− I will have only a finite number of
nonzero columns, but there may be infinitely many rows in which A differs from the
identity.
We can unify and generalize our two infinite dimensional versions of the special

linear group, FSLK(V ) and SL
0
∞(K), by first realizing that both are generated by

K-transvection subgroups. By definition, FSLK(V ) is generated by all transvec-
tions, while the theorem and our construction show that the stable group is gener-
ated by the various elementary matrix transvections I+αei,j (Gaussian elimination
again).
Let U be a K-subspace of V and W a K-subspace of the dual V T. Then the

special K-transvection group TK(W,U) is defined as

TK(W,U) = � tϕ,x |ϕ ∈W,x ∈ U, xϕ = 0 X ,
the subgroup of GLK(V ) generated by all the transvections tϕ,x where the eligible
pairs ϕ, x are restricted to W and U . Clearly such a group is finitary. In fact it is a
subgroup of FSLK(V ) = T(V

T, V ). On the other hand SL0∞(K) = T(W,V ), where
W is the subspace of V T spanned by BT = {eT1, eT2, . . . , eTk, . . .}, the dual of the basis
B = {e1, e2, . . . , ek, . . .}.
There is a certain amount of symmetry here between W and U . A transvection

on V is also a transvection in its natural action on V T, so in some respects it may
be better to think of the transvection group G as acting on the product KU ×WK

respecting the natural pairing p:U×W → K given by p(u,w) = u.w . The members
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of T(W,U) act as isometries of U ×W equipped with this pairing in the sense that,
for all u ∈ U , w ∈W , and g ∈ T(W,U),

p(u,w) = u.w = ug.g−1w = ug.wg = p(ug,wg) ,

using the natural right action of GLK(V ) on V
T. The group T(W,U) is faithful on

both U and W if and only if the pairing p is nondegenerate on both sides, that is,
if annUW = 0 and annWU = 0. Here by definition

annUW = {u ∈ U |u.w = 0, for all w ∈W} ,
and similarly for annWU .
For G = T(W,V ) we are guaranteed annWV = 0 since W ≤ V T. Consider the

case where annVW is also 0, so that G is irreducible in its action on V by Lemma
??. If dimK V = n is finite, then the only possible such choice forW is the complete
dual V T; and TK(W,V ) = SLK(V ) l SLn(K). Assume now that dimK V is infinite,
where (as we have seen) there are various distinct choices for W with annVW = 0.
Let Σ be a finite subset of G, so that [W,Σ] = W0 and [V,Σ] = V0 both have

finite dimension. Since the pairing p is nondegenerate, there are finite dimensional
W1 and V1, with W0 ≤ W1 ≤ W and V0 ≤ V1 ≤ V , for which the restriction of
the pairing p is nondegenerate. Thus �ΣX ≤ T(W1, V1) ≤ G. Nondegeneracy then
guarantees thatW1 and V1 have the same finite dimension, k say, and that T(W1, V1)
is isomorphic to SLk(K).
Therefore G = T(W,V ) with annVW = 0 has every finitely generated subgroup

contained in a quasisimple subgroup. This forces G itself to be simple or possibly
quasisimple. As G is irreducible on V , any central element is multiplication by a
member of the division ring HomK(V, V ). When V has infinite dimension, such a
nontrivial multiplication is not finitary whereas G is. We conclude that in this case
G is simple. Indeed if K is locally finite, then G is locally finite, simple, and finitary.
(It can not be linear, because it has alternating sections of unbounded degree.)
In Proposition ?? we saw that the geometry of the alternating group can be

reclaimed from its class of 3-cycles, its root elements. A similar statement is true
here for groups generated by K-transvection subgroups, that is, root subgroups.

( 2.5 ) Theorem. Let G ≤ GLK(V ) be an irreducible group generated by the
conjugacy class TG of K-transvection subgroups with |T | = |K| > 2. Then G is
either
1. FSpK(V, s), for s a nondegenerate symplectic form, or
2. TK(W,V ), for some W ≤ V T with annVW = 0.

Here FSpK(V, s) is a finitary symplectic group, as discussed in the next subsection.
This theorem is from [?]. (There the reducible case and the case |T | = |K| = 2

are also handled, but the results are more complicated. For instance, the 2-cycles of
the finitary symmetric group are transvections on a natural module in characteristic
2.) For finite dimensional V , the theorem is due to McLaughlin [?]. Related results
appear in Zalesskii and Serezhkin [?]. Kantor [?] considers the more general situation
of indecomposable subgroups of orthogonal groups which are generated by Siegel
elements; see the subsection on orthogonal groups below and also [?].
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We have already observed that, for KV of countable dimension, the stable group
SL0∞(K) can be realized as a group T(W,V ) with W of countable dimension and
annVW = 0. The converse holds. IfW is a subspace of V T with annVW = 0 then the
dimension of W must be infinite, and such a W of countable dimension has a basis
which is dual to some basis of V . (See [?] for this and other remarks on the groups
T(W,V ).) For W of countable dimension with annVW = 0, the group T (W,V )
is thus isomorphic to SL0∞(K). Indeed, any two such subgroups are conjugate in
GLK(V ). Therefore although the initial construction of the stable group appears to
be very basis dependent, it actually has a very natural and basis-free definition as
a minimal irreducible group among the T(W,V ). In particular, any group T(W,V )
which is countable and irreducible on V must be a stable linear group SL0∞(K) for
a suitable choice of basis B.
2.3. Finitary Symplectic Groups

Consider the K-space V endowed with the symplectic (or alternating) form s:V ×
V → K. That is, s satisfies, for all α,β ∈ K and x, y, z ∈ V :
1. s(αx+ βy, z) = αs(x, z) + βs(y, z);
2. s(x, y) = −s(y, x);
3. s(x, x) = 0.
In this case, the pair (KV, s) is called a symplectic space (although we sometimes
abuse the terminology by referring to V itself as the symplectic space). The radical
of the symplectic space is its subspace

rad (KV, s) = {v ∈ V | s(v,w) = 0, for all w ∈ V } .

The symplectic space is nondegenerate if its radical is 0, and otherwise it is degen-
erate.
The linear transformation g ∈ GLK(V ) is an isometry of the symplectic space

(KV, s) provided that, for all x, y ∈ V ,

s(x, y) = s(xg, yg) .

The subgroup ofGLK(V ) consisting of all isometries is the symplectic group SpK(V, s).
The finitary symplectic group is then the group of isometries which are finitary:

FSpK(V, s) = SpK(V, s) ∩ FGLK(V ) .

For a given V of uncountable dimension, there are many fundamentally different
nondegenerate symplectic forms and so different groups. The countable dimension
case mimics that of finite dimension, in that there is a unique nondegenerate form up
to similarity, and so a unique nondegenerate symplectic group up to isomorphism.
(See [?].)
The null axiom s(x, x) = 0 for symplectic spaces is an immediate consequence

of the preceding alternating axiom s(x, y) = −s(y, x) when K has characteristic
other than 2. Symplectic spaces in characteristic 2 have other exotic properties. In
particular, the symplectic groups in characteristic 2 also arise as orthogonal groups
(see below); and it will on occasion be convenient to restrict consideration of the
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symplectic case to characteristics other than 2, leaving the treatment of characteristic
2 to the orthogonal case.
Let (KV, s) be a nondegenerate symplectic space. For each vector x ∈ V , the

map δx:V → K given by mapping v to s(v, x) is a K-linear functional, an element
of V T. The map δ:x )→ δx is then a canonical K-isomorphism of V into V T. If the
transvection tϕ,x is an isometry of (V, s), then it is in an easy exercise to see that

x⊥ = {v ∈ V | s(v, x) = 0} ,
the kernel of the functional δx, must also be the kernel of the functional ϕ. That is,
tϕ,x is a symplectic isometry if and only if ϕ = δxα, for some α ∈ K. The symplectic
root elements are then the symplectic transvections tδxα,x = tδx,αx which we write as

tx,αx: v → v + s(v, x)αx .

The corresponding root subgroup Tx is the K-transvection subgroup consisting of
the identity and the elements tx,αx, as α runs through the nonzero elements of K.
Again it is isomorphic to the additive group of K.

( 2.6 ) Theorem. (See [?, 8.5,8.8].) For a finite dimensional and nondegenerate
symplectic space (KV, s), the symplectic group SpK(V, s) is generated by its root
elements, the symplectic transvections. The symplectic group is quasisimple, except
for certain small, finite exceptions, and has center {±1}.
From this we easily conclude:

( 2.7 ) Corollary. For a nondegenerate and infinite dimensional symplectic space
(KV, s), the finitary symplectic group FSpK(V, s) is simple and generated by its root
elements, the symplectic transvections.

We have already anticipated this corollary in Theorem ?? where finitary sym-
plectic groups and the groups T(W,V ) were characterized as those irreducible groups
generated by K-transvection subgroups. Unlike the special linear case, for a given
nondegenerate symplectic space (KV, s) we do not have several different finitary
analogues, but only the one. This is because the “duality” δ identifies a canonical
subspace W = δ(V ) of the dual V T for which FSp(V, s) ≤ T(W,V ). In particu-
lar, for V of countable dimension the finitary symplectic group is isomorphic to the
stable symplectic group, which can be constructed by embedding Sp2k(K) in the up-
per lefthand corner of Sp2k+2(K) as before. (Extend the nondegenerate symplectic
space V2k = K

2k to V2k+2 = K
2k+2 by adding on a perpendicular direct summand

which is nondegenerate of dimension 2.)
Our next result is a symplectic relative of Corollary ??. It states that, in a strong

sense, the minimum possible number of root element (transvection) generators is in
general enough.

( 2.8 ) Theorem. Let G = Sp(V, s) l Sp2n(q), where q is odd but (n, q) W= (1, 9).
For t a transvection, consider a subgroup H = �tHX with dim[V,H] = k < 2n. Then
there is a set Σ = {t1, . . . , t2n−k} of 2n − k distinct G-conjugates of t, such that
G = �H,ΣX.
In the exceptional cases where q is even or (n, q) = (1, 9), there is a suitable Σ

of size 2n− k + 1.
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Proof. The case n = 1 only asks how many transvections are required to
generate SL2(q). The answer [?, Theorem 4.9] is two, if q is odd but not 9, and
three otherwise.
In the nonexceptional general case (q odd but not 9), we observe that from the

case n = 1 there is a t1 with H1 = �H, t1X satisfying dim[V,H1] = k+1 and and such
that H1 contains a subgroup Sp2(q) and hence a full K-transvection subgroup. Now
the result follows easily from Theorem ?? and indeed from MacLaughlin’s original
result [?].
For Sp4(9), the result should be checked by hand, and then an argument as in

the preceding paragraph takes over for (n, q) = (≥ 3, 9). Similarly, for q even, the
previous argument works as well, provided we are willing to accept one additional
generator. 2

For instance, taking H = �tX, we learn that G can always be generated by 2n
distinct transvections except for (n, q) = (1, 9) and q even where 2n + 1 suffice.
Any number of transvections smaller than 2n would generate a subgroup whose
commutator was proper in V and so could not be all of G. Although we have not
proven it, in characteristic 2 the additional transvection generator is always needed.
This is associated with the fact that symplectic groups in characteristic 2 are also
orthogonal groups, as will be discussed further below. In Sp2(9) l Alt6 transvections
are 3-cycles, and three are required for generation.
For the finite classical groups of other types, similar theorems hold. Theorem ??

and Proposition ?? include special cases.

2.4. Finitary Unitary Groups

Let σ be an automorphism of order 2 of the field K. We provide the K-space V with
a unitary (or hermitian) form u:V × V → K. That is, u satisfies, for all α,β ∈ K
and x, y, z ∈ V :
1. u(αx+ βy, z) = αu(x, z) + βu(y, z);
2. u(x, y) = u(y, x)σ.
In this case, the pair (KV, u) is called a unitary space (briefly, V is a unitary space).
The radical of the unitary space is, as before,

rad (KV, u) = {v ∈ V |u(v, w) = 0, for all w ∈ V } .
The unitary space is nondegenerate if its radical is 0, and otherwise it is degenerate.
The linear transformation g ∈ GLK(V ) is an isometry of the unitary space

(KV, u) provided that, for all x, y ∈ V ,
u(x, y) = u(xg, yg) .

The subgroup of GLK(V ) consisting of all isometries is the general unitary group
GUK(V, u). The finitary unitary group is then the group of isometries which are
finitary:

FGUK(V, u) = GUK(V, u) ∩ FGLK(V ) .
The notion of unitary space which we study is not the most general. It is not

necessary to restrict attention to fields rather than division rings. More seriously, we
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shall only consider those unitary spaces which contain isotropic vectors. A nonzero
vector x is called isotropic if u(x, x) = 0. A complex space endowed with its usual
inner product provides an example of a unitary space which has no isotropic vectors.
Such a space is called anisotropic. The isometry groups of anisotropic spaces behave
in general differently from those of our unitary spaces. We are interested primarily
in groups and spaces over finite or locally finite fields, and over such a field any
anisotropic space must have dimension 1.
Let (KV, u) be a nondegenerate unitary space. For α ∈ K and x ∈ V , the

transvection
tx,αx: v → v + u(v, x)αx

is an isometry if and only if x is isotropic and ασ = −α (α is called skew). These
unitary transvections are our root elements in this case. For a fixed isotropic 1-space
�xX, the corresponding root subgroup is the subgroup consisting of the identity and
the elements tx,αx, as α runs through the nonzero skew elements of K. The root
subgroup is isomorphic to the additive group of K0 = {β |β = βσ}, the degree 2
subfield of K composed of elements fixed by the automorphism σ.
In finite dimensions, a unitary isometry need not have determinant 1, so we are

also interested in the special unitary group

SUK(V, u) = GUK(V, u) ∩ SLK(V )
or, more generally, in the finitary special unitary group

FSUK(V, u) = GUK(V, u) ∩ FSLK(V ) .
( 2.9 ) Theorem. (See [?, 10.23].) Let (KV, u) be a finite dimensional and nonde-
generate unitary space which contains an isotropic vector. Then, except for certain
small, finite exceptions, the special unitary group SUK(V, u) is quasisimple and is
generated by its root elements, the unitary transvections.

( 2.10 ) Corollary. If the nondegenerate and infinite dimensional unitary space
(KV, u) contains an isotropic vector, the finitary special unitary group FSUK(V, u)
is simple and is generated by its root elements, the unitary transvections.

As before, subgroups of unitary groups which are generated by transvections must
have a very restricted structure. For instance, the minimum conceivable number of
transvection generators for the full special unitary group can be achieved in most
cases.

( 2.11 ) Proposition. (See [?, Theorem 4.9].) If dimK V ≥ 5, K is finite, and u
is nondegenerate, then SUK(V, u) is generated by n unitary transvections.

A more general result like Theorem ?? is true here as well.
For the finite group SUK(U, u) of the proposition, the field K must be Fr2 , for

some prime power r; and the form u is uniquely determined up to isometry. The
group is thus unique up to isomorphism and is often denoted by SUn(r

2) or by
SUn(r). For the purposes of this paper we prefer and use exclusively the first of
these two differing pieces of notation. In particular the natural module for SUn(q)
is defined over Fq.
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2.5. Finitary Orthogonal Groups

On the K-space V the orthogonal space (or, sometimes, quadratic space) (KV, q)
with quadratic form q:V → K and associated orthogonal (or symmetric bilinear)
form b:V × V → K satisfies, for all α,β ∈ K and x, y, z ∈ V :
1. b(αx+ βy, z) = αb(x, z) + βb(y, z);
2. b(x, y) = b(y, x);
3. q(αx) = α2q(x);
4. q(x+ y)− q(x)− q(y) = b(x, y).
Clearly q uniquely determines b, the polar form of q. Conversely we have

2q(x) = q(2x)− q(x)− q(x) = b(x, x) .
Therefore if the characteristic of K is not 2, the orthogonal form b uniquely de-
termines q. In characteristic 2 the polar form of q is revealed as symplectic since
2q(x) = 0. Conversely, starting with any nonzero symplectic b and a map q defined
on a basis, we can extend q to a quadratic form with b as it polar form by using 3.
and 4. above. In particular, in characteristic 2 any symplectic b will be the polar
form for more than one quadratic form q.
The radical of the orthogonal space (KV, q) with polar form b is

rad (KV, q) = {v ∈ V | q(v) = 0, b(v, w) = 0, for all w ∈ V } .

The orthogonal space is nondegenerate if its radical is 0, and otherwise it is degen-
erate. In characteristic not 2, the radical of the quadratic form q equals the radical
of its polar form b (with the obvious definition). In characteristic 2, the form b is
symplectic on V and rad (KV, q) could be strictly smaller than the symplectic radi-
cal rad (KV, b). If the symplectic radical is 0, then the space (KV, q) is nondefective;
otherwise it is defective.
The axioms imply that the restriction of a nondegenerate but defective quadratic

form q to the symplectic radical is a σ-semilinear map whose image is a K2-subspace
of K, where K2 is the subfield of squares in K. In the cases of interest to us, K2

will always be equal to K; and the symplectic radical will have K-dimension 1 (or
0).
The linear transformation g ∈ GLK(V ) is an isometry of the orthogonal space

(KV, q) provided that, for all x ∈ V ,
q(x) = q(xg) .

The subgroup of GLK(V ) consisting of all isometries is the general orthogonal group
GOK(V, q). The finitary general orthogonal group is then the group of isometries
which are finitary:

FGOK(V, q) = GOK(V, q) ∩ FGLK(V ) .
We may again pass to the special orthogonal group of determinant 1 isometries, but
here this subgroup need not be perfect. We are more interested in the derived group

FΩK(V, q) = FGOK(V, q)
I
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which we shall call the finitary orthogonal group. (For V of finite dimension we write
ΩK(V, q) = GOK(V, q)

I. In certain small, finite cases, this notation may go against
convention.)
In characteristic other than 2, a nondegenerate orthogonal space has no isome-

tries which are transvections; in characteristic 2, a K-transvection subgroup meets
the general orthogonal group in a subgroup of order at most 2. Let (KV, q) be a
nondegenerate orthogonal space. The subspace U of V is totally singular if the re-
striction of q to U is identically 0, so that U is its own radical. In an orthogonal
group, a root element s is a unipotent element with (s− 1)2 = 0 for which the range
V (s− 1) is totally singular of dimension 2. We shall refer to these orthogonal root
elements as Siegel elements. (In [?, Chap. 11] these are the Siegel transformations of
type II.) The root subgroups correspond to the various totally singular 2-spaces and
are isomorphic to the additive group of K. It is possible to give a precise formula
for the action of a Siegel element just as we have done earlier for transvections, but
we shall not require the exact description.
Let (KV, q) be a nondefective orthogonal space in characteristic 2 with polar

symplectic form b. Choose x ∈ V with q(x) W= 0. Let W be the subspace x⊥ = {v ∈
V | b(v, x) = 0} and p the restriction of q toW . The orthogonal space (KW,p) is then
nondegenerate but defective with symplectic radical �xX. The space W̄ = W/�xX is
a nondegenerate symplectic space with form b̄ induced by the restriction of b to
W . Any symplectic isometry of the space W̄ then lifts uniquely to an orthogonal
isometry ofW . Therefore the nondegenerate symplectic space (KW̄ , b̄) and its group
can be realized as a nondegenerate orthogonal space (KW,p) and its group. In fact
any symplectic group in characteristic 2 can be “made orthogonal” by this process.
As mentioned above, we often prefer to think of symplectic groups in characteristic
2 as orthogonal groups. There is the possibility of confusion here because there are
two different types of root elements involved – the symplectic transvections and
the orthogonal Siegel elements. Each transvection on symplectic (KW̄ , b̄) lifts to a
transvection on orthogonal (KW,p), but two different transvections of the symplectic
root subgroup Tz̄ necessarily lift to tϕ1,z1 and tϕ2,z2 with �z1X W= �z2X.

( 2.12 ) Theorem. (See [?, 8.8,11.9,11.48].) Let (KV, q) be a finite dimensional
and nondegenerate orthogonal space which has dimension at least 5 and contains
totally singular 2-spaces. In characteristic 2, assume further that the dimension is
at least 6 and that K = K2. The orthogonal group ΩK(V, q) is quasisimple and, in
particular, is generated by its root elements, the Siegel elements.

( 2.13 ) Corollary. If (KV, q) is a nondegenerate and infinite dimensional or-
thogonal space which contains a totally singular 2-space and also in characteristic 2
has K = K2, then the finitary orthogonal group FΩK(V, q) is simple and generated
by its root elements, the Siegel elements.

For the finite and nondegenerate orthogonal groups, there are results about sub-
groups generated by root elements similar to Theorems ?? and ?? and Proposition
?? above. In particular, the minimum conceivable number of root element generators
(namely, one-half the dimension) is always nearly enough. See also [?, ?].
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3. Tools

In this section we discuss the main tools of our proof – Kegel covers; a linear
theorem of Jordan type; and representations constructed via ultraproducts.

3.1. Kegel Covers

Let G be a simple group and let X be a countable (or finite) subset of G. It will
be no disadvantage to assume that X is a subgroup, since every countable subset
of a group generates a countable subgroup. The simplicity of G is in fact a local
property, in the sense that it can be checked within the finitely generated subgroups
of G:

The group G is simple if and only if, for each ordered pair x, y ∈ G, there is a
finite set g1, . . . , gk (for some k which depends upon x and y) with x =

k
i=1 y

±gi .

With this in mind, we try to build X = X0 into a simple group. For each pair
x, y from X0, find g1, . . . gk as described; and let X1 be the subgroup generated by
X0 together with all the gi required for the various pairs x, y. As X0 is countable,
the number of pairs is countable, as is the total number of the various gi; and so,
ultimately, the subgroup X1 is itself countable. We have designed X1 to verify
simplicity relative to all pairs x, y from its subgroup X0, but in the process many
more elements have presumably been introduced. We continue in the same manner,
but now starting from the subgroupX1. Choose in turn each of the countable number
of pairs x, y ∈ X1; find suitable gi for each pair; and define the new subgroup X2 to
be generated by X1 together with all the new gi. Now we have a countable X2 which
verifies simplicity relative to each pair x, y from its subgroup X1. This is a machine
whose crank we can keep on turning, at each new stage i producing a countable
subgroup Xi which verifies simplicity relative to all pairs from its subgroup Xi−1. If
we now set H = iXi, then the subgroup H of G verifies simplicity relative to each
pair of its elements; and so H itself is simple. It contains the original subgroup X
and, being the ascending union of countable subgroups, is countable itself. We have
proven:

( 3.1 ) Theorem. (P. Hall) In a simple group, every countable subset is contained
in a countable simple subgroup.

This argument, which is due to Phillip Hall, is in fact a special case of the downward
Lowenheim-Skolem argument of model theory. There are several places in the theory
of locally finite simple groups where ideas and methods from model theory appear to
great advantage. Another important instance is found in the third subsection (and
the appendix).
Hall’s result is for arbitrary simple groups, whereas we are mainly concerned with

locally finite groups which are simple. We thus ask whether something stronger is
true in this smaller class. We can hope that, in a locally finite simple group, every
finite subgroup is contained in a finite simple subgroup. This is false; see Corollary
?? for the counterexample discovered by Zalesskii and Serezhkin. A slightly weaker
statement is true, as was first proven by Kegel [?, 4.3]. The subgroup X is said to
be covered by the section H/M if X is a subgroup of H which meets the normal
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subgroup M trivially. Such a covering leads to an isomorphic embedding of X in
the section H/M .

( 3.2 ) Proposition. In a locally finite simple group, every finite subgroup is
covered by a simple section of a finite subgroup.

Proof. The proof of Hall’s result can be attempted. At each stage the subgroup
Xi is finitely generated and so finite, but the proof falls down at the last moment.
The ascending union of finite subgroups still will likely be countably infinite rather
than finite.
The answer is to stop along the way. First, consider the embedding of X in X1.

Since every nontrivial element of X is in the X1-normal closure of each other element
of X, there is a X1-chief factor P/Q which covers X. It is tempting to choose H = P
and M a maximal normal subgroup of P containing Q, but this may not be good
enough. The section P/Q is a direct product of isomorphic finite simple groups, but
certain elements of X might project trivially onto the direct factor S selected by our
choice of M . That is, if the element x of X projects nontrivially onto S, it is still
possible for y ∈ X to project trivially onto S and have x ∈ �yg1 , . . . , ygkX since the
gi, while all belonging to X1, are not necessarily in its subgroup P .
To remedy the problem, we go one step further, considering the embedding of X1

(and its subgroup X) in X2. Again there is a chief factor P̃ /Q̃ of X2 which covers
X1 and is a direct product of isomorphic simple groups. Consider again our pair
x, y from the original X, and let S̃ now be a simple direct factor of P̃ /Q̃ onto which
x projects nontrivially. Since all the gi from the previous paragraph are in X1, they
are in P̃ and are covered by the section. If y projected trivially onto S̃, then x could
not be in its P̃ -normal closure, which is the case since X1 ≤ P̃ . We conclude that
y must also project nontrivially onto S̃. That is, once one element of X projects
nontrivially onto S̃, they all must. If we set H = P̃ and take M to be that maximal
normal subgroup of H containing Q̃ which picks up all the factors of P̃ /Q̃ except S̃,
then X is covered by the simple section H/M l S̃ of finite P̃ , as required. 2

A sectional cover of a group G is a set C = {(Gi, Ni) | i ∈ I} of pairs of subgroups
such that, for each i ∈ I, Ni is normal in Gi, and, for every finitely generated
subgroup X of G, there is an i with X covered by the section Gi/Ni. (If each Ni
equals 1, then we speak of a subgroup cover.) The previous proposition then says
that the locally finite simple group G has a sectional cover by simple sections Gi/Ni
of finite subgroups Gi. Such a sectional cover is called a Kegel cover after Otto
Kegel, who first proved their existence. (See [?, 4.3] and also [?, ?].) The subgroups
Ni are the Kegel kernels, and the simple factors Gi/Ni are the Kegel quotients. If G
is finite, then any Kegel cover contains the trivial cover {(G, 1)}.
The Kegel cover C of G is a particular type of local system for G, which is to say,

G is the union of its subgroups Gi, and for any two Gi and Gj there is a third Gk
with �Gi, GjX ≤ Gk. A Kegel cover has a stronger property: we can choose k so that
Gk not only contains the subgroup �Gi, GjX but the simple section Gk/Nk covers
�Gi, GjX. Once such containment and covering statements are true about pairs of
subgroups Gi, Gj , they actually hold for all finite collections of subgroups Gi; there
is a k such that the section Gk/Nk covers the subgroup �G1, G2, . . . , GnX.
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The group G is the direct limit of the members of any local system. Indeed the
study of covers and local systems really stems from a desire to refine the trivial ob-
servation that any group is the direct limit of its set of finitely generated subgroups.
The next result is actually a combinatorial result about partial orderings in which
finite sets have upper bounds, but it is used frequently and crucially to replace a
large Kegel cover by a smaller and more manageable one.

( 3.3 ) Lemma. (Coloring Argument) Let G be a locally finite simple group,
and suppose that the pairs of the Kegel cover K = {(Gi, Ni) | i ∈ I} are colored with
a finite set 1, . . . , n of colors. Then K contains a monochromatic subcover. That is,
if Kj is the set of pairs from K with color j, for 1 ≤ j ≤ n, then there is a color j
for which Kj is itself a Kegel cover of G.

Proof. Otherwise, for each j, there is a finite subgroup Xj of G which is not cov-
ered by any section which is colored by j. The subgroup X = �X1, . . . , Xj , . . . , XnX
is therefore not covered by a section with any of the colors 1, 2, . . . , n. As X is gen-
erated by a finite number of finite groups, it is finite itself. Therefore some section
of the Kegel cover K covers X, a contradiction which proves the lemma. 2

A trivial example of the coloring argument is nevertheless instructive. Choose
a nonidentity g in G and color the sections (that is, pairs) of the Kegel cover
{(Gi, Ni) | i ∈ I} with two colors, one indicating that g W∈ Gi − Ni and the sec-
ond color indicating g ∈ Gi − Ni. One of the color classes must be a subcover,
but by definition the first can not, since it nowhere covers �gX. We have proven
that the sections which cover a specific element are themselves a Kegel cover. (This
would have worked with any finite X in place of g. Less evident applications of the
argument appear later.)

( 3.4 ) Proposition. Let G be a locally finite simple group with Kegel cover
K = {(Gi,Ni) | i ∈ I}, and choose a nonidentity g in G. For each j ∈ J = {j ∈
I | g ∈ Gj−Nj}, set Hj = �gGj X andMj = Hj∩Nj. Then Kg = {(Hj ,Mj) | j ∈ J} is
a Kegel cover whose collection of Kegel quotients is contained in that of the original
cover.

Proof. As G is the direct limit of the Gj , the normal closures Hj are also
directed. If H is the subgroup of G which is the direct limit of the Hj , then H must
be normal in G and nontrivial since g ∈ H. Therefore H = G. Certainly

Hj/Mj = Hj/Hj ∩Nj l HjNj/Nj = Gj/Nj .

It remains to observe that if Gi/Ni covers Gj , then Hi/Mi covers Hj. 2

Proposition ?? tells us that Kegel covers exist. Proposition ?? and the coloring
argument of Lemma ?? then allow us to begin searching for covers which are in
some sense nice. The next observation [?, 2.8] will give us further opportunity to
specialize our covers.
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( 3.5 ) Lemma. Let N be normal in the finite group G with G/N perfect. Then
G has a unique subgroup H which is minimal subject to being normal in G and a
supplement to N .

Proof. Let Ḡ = G/N . If H1 and H2 are normal supplements to N , then

H1 ∩H2 ≥ [H1, H2] = [H̄1, H̄2] = [Ḡ, Ḡ] = Ḡ . 2

In this case, we call H = H(G,N) the heart of the pair (G,N). If

S = {(Gi,Ni) | i ∈ I}
is a Kegel cover of the group G, then the heart of S is

H = {(H(Gi, Ni), Ni ∩H(Gi, Ni)) | i ∈ I} .
The quotients of H are identical to those of S.
For G = AltΩ, let the canonical cover of G be

CC(AltΩ) = {(Alt∆, 1) |∆ ⊆ Ω, |∆| <∞} .
Notice that this is actually a cover by simple subgroups, not just simple sections.

( 3.6 ) Proposition. Let S be a Kegel cover of G = AltΩ, for some infinite Ω;
and let H be the heart of S. Then H∩ CC(G) is a Kegel cover of G, and H− CC(G)
is not a cover.

Proof. Let t be a 3-cycle of G, and let St = {(Hi,Mi) | i ∈ I} be the Kegel
cover produced as in Proposition ?? by taking the normal closure of t for each section
Gi/Ni of S which covers t. Each Hi = �tGiX is a normal supplement to Ni in Gi, so
Hi contains the heart of (Gi, Ni).
By Proposition ?? the group Hi is a direct product of natural finite alternating

subgroups of G. As Mi is normal in Hi with Hi/Mi simple, Mi can only be a direct
product of all but one of the direct factors. Let Alt∆i

be the missing factor. By
construction Hi is normal in Gi, and so Mi = Hi ∩Ni is also. This forces the lone
missing factor Alt∆i to be normal itself. The 3-cycle t is in Hi but not in Ni, so
Alt∆i

must be the normal closure of t in Gi and is clearly a simple complement to
Ni in Gi. That is, Hi = Alt∆i

is the heart of (Gi,Ni); Mi = 1; and the cover St is
contained in H∩ CC(G). On the other hand, H− CC(G) does not cover t and so can
not be a cover. 2

The proposition is a recast version of [?, (8.1)] with the elementary proof promised
there. Among other things, it provides an elementary proof of Hartley’s observation
[?] that the infinite alternating groups can not be written as a nonnatural limit of
diagonally embedded finite alternating groups.
Each of the simple groups G discussed in Section 2 has a Kegel cover, CC(G),

which is a canonical cover in that every cover can be viewed as a modified version
of this particular one. We present only those for the symplectic groups.
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Let s be a nondegenerate symplectic form on the vector space V , infinite di-
mensional over the locally finite field K; and let G = FSpK(V, s) be the associated
finitary symplectic group. If {(Gi, Ni) | i ∈ I} is a Kegel cover of G, then G is the di-
rect limit of its finite subgroups Gi and V is the direct limit of its finite dimensional
subspaces [V,Gi]. As s is nondegenerate, every finite dimensional subspace is con-
tained in one for which the restriction of s is nondegenerate. This implies that G has
a cover by finite dimensional quasisimple symplectic subgroups. For the alternating
groups, the canonical cover was composed of simple groups; but here nothing like
that is true. Although as just seen quasisimple covers exist, not every cover reduces
to a quasisimple one. This is essentially because the space V , although nondegener-
ate, can nevertheless be written as a direct limit of finite dimensional subspaces, each
of which is degenerate. The associated subgroup cover is then not quasisimple but
instead looks to be composed of arbitrary finite dimensional “parabolic subgroups,”
groups which are unipotent-by-quasisimple. Such subgroups do provide a canonical
cover.
Choose a finite subset X = {u1, . . . , un} of V , and set

KX = �s(ui, uj) | 1 ≤ i, j ≤ nX ,
that subfield of K generated by the entries in the Gram matrix of the set X. The
subfield KX is finite, since X is finite and K is locally finite. Next choose a finite
subfield F of K which contains KX . Set FX =

n
i=1 Fui, an F -subspace of V . We

then let GX,F = �tu,αu |u ∈ FX − radFX, α ∈ F − 0X.
The group GX,F can be viewed as being generated by full transvection subgroups

over F , and so is a unipotent normal subgroup P extended by a symplectic group
over F (see Lemma ?? and Theorem ??). In particular, GX,F is unipotent-by-
quasisimple. Its solvable radical NX,F is the unipotent radical P extended by the
subgroup of symplectic scalars {±1} (which is 1 in characteristic 2). We then have
the canonical cover

CC(G) = {(GX,F , NX,F ) |X ⊂ V, |X| <∞, KX ≤ F ≤ K, |F | <∞} ,
and the counterpart of the previous result is valid.

( 3.7 ) Proposition. Let S be a Kegel cover of G = FSpK(V, s), and let H be the
heart of S. Then H ∩ CC(G) is a Kegel cover of G, and H− CC(G) is not a cover.

As a corollary we have the result of Zalesskii and Serezhkin [?] mentioned earlier.

( 3.8 ) Corollary. A stable symplectic group over a finite field of odd order does
not have a cover by simple subgroups.

More generally, a finitary symplectic group in infinite dimension over a locally finite
field of odd characteristic does not have a cover by simple subgroups. Indeed in odd
characteristic the group GX,F is never simple; even when its unipotent radical is
trivial, it has a central subgroup of order 2.
Belyaev [?] and Meierfrankenfeld [?] have proven by elementary methods that

every locally finite simple group which is finitary has a Kegel cover whose members
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are unipotent-by-quasisimple, as is the case with CC(G). It is easy to see that the
subset CCqs(G) composed of those GX,F which are quasisimple (corresponding to
FX which are nondegenerate for the restriction of s) is still a cover. Indeed from
Theorem ?? we may conclude that every locally finite, finitary simple group has a
quasisimple cover; but we do not have an elementary proof of this.
As mentioned before, for each classical finitary group there is a similarly defined

canonical cover and a corresponding proposition stating that every Kegel cover is at
heart canonical. This responds in a precise manner to Hartley’s remark [?] that, for
finitary locally finite simple groups, Kegel covers should be essentially unique. All
the proofs are basically the same. Once a member of the cover has root elements
outside its kernel, its heart must be of a very restricted form.

3.2. A Theorem of Jordan Type

A group which has a faithful representation in finite dimension will in general have
many fundamentally different ones coming from, for instance, tensor, symmetric,
and exterior powers. This is not the case for finitary groups which are not finite
dimensional. Each simple group in the conclusion of Theorem ?? has only one basic
finitary representation. All others come from this one via direct sums, “duality,” or
playing with the field [?, ?, ?].
We can think of an infinite dimensional, finitary group as being generated by

“elements of small degree.” Jordan [?, Théorème II] proved that a finite, primi-
tive subgroup of Symn which contains an element of small support is either Altn
or Symn. This idea was extended by Wielandt [?] who proved that a primitive
subgroup of SymΩ, for infinite Ω, which contains a finitary permutation must in
fact contain all of AltΩ. In our classification we need a theorem from [?] providing
a result similar to Jordan’s for finite, primitive linear groups. This theorem is really
all of the classification of finite simple groups, CFSG, that is required for the proof
of Theorem ??. (More is of course needed for Theorem ??, BBHST; and most
conceivable applications of Theorem ?? would also require BBHST.)

( 3.9 ) Theorem. Let perfect finite H ≤ GLK(V ), for K algebraically closed, with
H primitive on V . Assume that H is generated by elements whose degree on V is
less than

√
n/12, where n = dimK V . Then either:

1. H is Altn and V is a natural module; or
2. H is a quasisimple classical group in the same characteristic as K, and V is

a nearly natural module.

If finite G is a quasisimple classical group Cln(q) or simple PCln(q), then a natural
module for G is the module Fnq for its defining projective representation (or any twist
of this module via automorphisms). A nearly natural module is a natural module
tensored up to a (possibly) larger field. If G is an alternating or symmetric group on
Ω, then a natural module for G is the nontrivial irreducible factor in the permutation
module KΩ, for any field K.
The irreducible, imprimitive case of the theorem can be handled as well.

( 3.10 ) Proposition. Let H, V , and K be as in Theorem ??, except that the
representation of H on V is assumed to be irreducible but not primitive. Let Ω =
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{Vi | i ∈ I} be a maximal block system. Then in its action on Ω the group H induces
AltΩ, and so H is the extension of a subdirect product of |I| copies of L ≤ GLK(Vi)
by AltΩ.

Proof. The permutation action of H on Ω must involve a characteristic 0
solution to the primitive case. Therefore by Theorem ?? (or Jordan’s theorem), H
induces AltΩ on Ω. 2

A representation and module as in the proposition will be called generalized
monomial. The representation and module are monomial if all the Vi have dimension
1, so that L is cyclic. Any permutation module KΩ is monomial for AltΩ, and on
occasion we shall abuse notation mildly by including the natural module (and any
other nontrivial section of the permutation module) as a monomial module.
It has been observed by Phillips [?, (9.1)] that a stronger version of the propo-

sition (with essentially the same proof) is valid in the broader context of finitary
groups which are irreducible but imprimitive and are generated by elements of small
degree. There finiteness plays no role and local finiteness is replaced by the weaker
assumption that there are no noncyclic free subgroups. For a careful discussion of
imprimitive modules, see Phillips’ article. They arise naturally in the study of gen-
eral finitary groups; for instance, an irreducible, locally solvable finitary group is
either finite dimensional or imprimitive in countable dimension [?, (8.2.5)].

3.3. Ultraproducts

In the previous two subsections we have seen that each group G from Theorem ?? is
highly geometric. The linear algebra and geometry of G is essentially unique, as seen
in the previous subsection, and precisely dictates the internal subgroup structure of
G, as seen in the first subsection. In classifying these groups we seek to reverse
the process by rebuilding the geometry out of the subgroup structure. We do this
using the ultraproduct construction for groups and representations. From a suitably
chosen Kegel cover we are able to fabricate the natural module and its geometry.
There are few references concerning ultraproducts which are elementary and readily
available (but see [?, pp.64-67]). Therefore in an appendix we provide a primer on
their use in the context of interest to us, the representation theory of groups.
Let {(Gi,Ni) | i ∈ I} be a Kegel cover of the infinite locally finite simple group

G. Order the index set I by declaring i < j if and only if Gi < Gj with Gi∩Nj = 1.
This ordering has the property that i ≤ k ≥ j implies �Gi, GjX ≤ Gk. Next let F
be an ultrafilter generated by the directed set (I,≤), as described in the appendix.
For each i ∈ I, let (ϕi, ci):Gi → GLFi(Wi) be a projective representation of Gi
whose kernel is Ni. Let W = FWi be the ultraproduct vector space over the
ultraproduct field F = F Fi.

( 3.11 ) Theorem. The ultraproduct provides a faithful projective representation
(ϕ, c):G→ GLF (W ). Furthermore:
(1) If, for each i ∈ I, the cocycle ci is trivial, then c is trivial; that is, if each ϕi

is a representation, then ϕ is a representation.
(2) If, for each i ∈ I, Gi in its action on Wi leaves invariant a nondegenerate

form of type Cl, then G in its action on W leaves invariant a nondegenerate form
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of type Cl.
(3) If, for each i ∈ I, the space Wi has Fi-dimension less than k, then W has

F -dimension less than k and G is a finite dimensional linear group.
(4) Let 1 W= g ∈ G. If, for each i ∈ I, the commutator [Wi,ϕi(�gX ∩ Gi)] has

Fi-dimension less than k, then [W,ϕ(g)] has dimension less than k. In particular,
G is a finitary linear group on W which leaves invariant a nondegenerate form of
type Cl if each ϕi(Gi) does.

Proof. Most of this is immediate from the remarks and results presented in the
appendix, particularly Theorem ??.
For the final remark of parts (3) and (4), we must show that the existence of a

faithful projective representation (ϕ, c):G → FGLF (W ) implies the existence of a
corresponding genuine representation ϕ̃. For (3) this is immediate; there is a faithful
and finite dimensional representation ϕ̃:G→ GL(W T ⊗W ). In the situation of (4)
this particular representation is not finitary when W has infinite dimension, and
something else must be done.
Consider now (4), and assume that W has infinite dimension. Let Z be the

group of scalars in GLF (W ), so that Z is isomorphic to the multiplicative group of
F . As ϕ is a projective representation, ϕ(G).Z is a subgroup of GLF (W ). Here
ϕ(G).Z/Z l G is simple. As ϕ(G).Z ∩ FGLF (W ).Z ≥ �g, ZX, we must have
ϕ(G).Z ≤ FGLF (W ).Z. As W has infinite dimension, Z ∩ FGLF (W ) = 1; so
FGLF (W ).Z = FGLF (W )×Z. Therefore we can construct the desired representa-
tion ϕ̃ as the map ϕ followed by projection onto FGLF (W ), so that the image ϕ̃(G)
equals ϕ(G).Z ∩ FGLF (W ).
If ϕ(G) leaves invariant a nondegenerate form of type Cl, then ϕ(G).Z acts on

a 1-space of such forms. Its perfect subgroup ϕ̃(G) therefore leaves each of these
forms invariant. 2

Theorem ?? provides us with two valuable corollaries.

( 3.12 ) Corollary. A locally finite simple group G which has a sectional cover
composed of sporadic, cyclic, exceptional Lie type groups, or classical groups of
bounded dimension has a faithful representation as a linear group in finite dimension.

Proof. For the groups belonging to these classes, there is a k such that each
group has a faithful representation on a vector space of dimension of at most k.
Therefore G has a faithful representation in dimension at most k by part (3) of the
theorem. 2

In particular BBHST (Theorem ??) applies to say that G is either finite or of Lie
type over a locally finite field.
Now choose 1 W= g ∈ G. If g ∈ Gi and Gi/Ni is an alternating or classical group,

let (ϕi, ci) be a natural representation chosen to minimize dimFi ϕi(g), the natural
degree of g in Gi/Ni. (If g W∈ Gi, take the natural degree of g in Gi/Ni to be 0.) An
immediate consequence of part (4) of the theorem is then:
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( 3.13 ) Corollary. A locally finite simple group G which has a sectional cover
composed of alternating groups or classical groups of unbounded dimension in which
the natural degrees of the element g W= 1 are bounded has a faithful representation as
a finitary linear group.

4. Around a Proof

We discuss a proof of Theorem ??. We first show that a group as hypothesized
resembles the conclusions internally, then we reconstruct its associated geometry
and identify it externally.

4.1. The Attack

Let G be a locally finite simple group which is a subgroup of FGLK(V ) but has no
faithful representation as a linear group in finite dimension. Assume that G has the
Kegel cover K = {(Gλ, Nλ) |λ ∈ Λ}.
Our approach has five basic steps:

A. Reconstruct the unipotent-by-quasisimple cover “H ∩ CC(G)”;
B. Find root elements;

C. Find a quasisimple cover “CCqs(G)”;
D. Rebuild the natural module and its geometry;

E. Identify G as the isometry group generated by all eligible root elements.

We begin by restricting the cover K under consideration.
Choose an arbitrary but fixed nonidentity element g of G, and set d = degV g =

dimK [V, g]. As mentioned after Lemma ??, the members of K with g in Gλ − Nλ

form a subcover. Discarding the unnecessary members of K, we may assume that
g ∈ Gλ −Nλ, for all λ.
We next further pruneK in a typical application of the coloring argument, Lemma

??. Choose a constant κ. The exact value of κ is not crucial, but we want it to be
large compared to d, that is, κ >> d. In particular, to use Theorem ?? we need
κ > 144d2. Color the members (Gλ,Nλ) of the cover K with six colors, according
to the isomorphism type of the simple quotient Gλ/Nλ:

1. Alternating Altnλ with κ < nλ;

2. Symplectic PSpnλ in odd characteristic with κ < nλ;

3. Unitary PSUnλ with κ < nλ;

4. Orthogonal PΩnλ with κ < nλ;

5. Linear PSLnλ with κ < nλ;

6. Cyclic, sporadic, execeptional Lie type, classical of degree nλ with κ ≥ nλ,
or alternating of degree nλ with κ ≥ nλ.

Take note that, as discussed earlier in Subsections ?? and ??, we are including
symplectic groups in even characteristic under the heading of orthogonal groups.
By the classification of finite simple groups, Theorem ?? (CFSG), we have as-

signed each member of the cover a color. Therefore by Lemma ?? there is a mono-
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chromatic subcover, one color class which is itself still a Kegel cover S. As G is
finitary but not linear, Corollary ?? says that the last color, class 6., does not give
a cover.
In summary, we have a locally finite simple group G ≤ FGLK(V ) which is not

linear, and an element g W= 1 of G with degV g = dimK [V, g] = d. The group G
has a Kegel cover S = {(Gi, Ni) | i ∈ I} with g ∈ Gi −Ni, for all i; and the simple
quotient Gi/Ni is of a fixed type, alternating or classical, one of 1. through 5. The
degree of Gi/Ni is ni with ni > κ, for a fixed constant κ (>> d). Indeed the set
{ni | i ∈ I} is unbounded (again by Corollary ??).
In making these coloring arguments, we appear to have used the full strength

of the classification of finite simple groups, CFSG. In fact it is possible to use
Theorem ?? to show directly that nonlinear G must be covered by alternating or
classical groups. Therefore, as mentioned before, Theorem ?? contains as much of
the classification as required for the proof of Theorem ??. On the other hand, most
envisioned applications would involve at least further appeal to Theorem ?? whose
proof requires more serious use of the classification.

4.2. A Unipotent-by-Quasisimple Cover: A

We first aim to prove that, starting from any Kegel cover, we can find one which
looks like one of those for the groups of Theorem ??. These covers are parabolic
for classical groups and natural for alternating groups. The nearly natural modules
for classical groups and generalized monomial modules for alternating groups were
defined and discussed in Subsection ??.

( 4.1 ) Proposition. For each i, there is a Gi-composition factor Vi in V with
kerGi Vi ≤ Ni; and Vi is a nearly natural module for classical Gi/Ni or generalized
monomial for alternating Gi/Ni.
In particular, for a classical cover S, the defining characteristic of the group

Gi/Ni is the same as that of V . If V has characteristic 0, then S is an alternating
cover.

Proof. The heart of (Gi, Ni) can not be in the kernel of every Gi-composition
factor since the heart is perfect. Thus there is some Gi-composition factor Vi whose
kernel is in Ni. If the action on Vi is primitive, then the proposition comes from
Theorem ??. In the imprimitive case we find that Vi is a generalized monomial
module for Gi, as in Proposition ??. 2

For each i, now choose a genuinely natural module Wi over the field Fi:

Gi/Ni Wi Fi
Altni Qni−1 Q

PClni(qi) Fniqi Fqi

Here PCl indicates one of the projective classical groups. For each i, next choose a
(projective) natural representation

ϕi:Gi → GLFi(Wi) ,
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taking care to minimize di = degWi
ϕi(g). (For alternating covers, we have a genuine

representation; the associated cocycle can be taken to be trivial.)

( 4.2 ) Corollary. For the projective representation ϕi:Gi → GLFi(Wi) we have

di = degWi
ϕi(g) = dimFi [Wi,ϕi(g)] ≤ dim[Vi, g] ≤ d .

Proof. By Proposition ?? the commutator [Wi,ϕi(g)] has dimension at most
that of [Vi, g] which is a section of [V, g] of dimension d. 2

As in Theorem ?? and Corollary ??, the simple group G acts on FWi, the
ultraproduct of the spaces Wi and a vector space over the field F Fi. It is conve-
nient to extend this field ultraproduct to its algebraic closure F and the vector space
ultraproduct to W , its tensor product with the field F . By the results mentioned
and Corollary ??, dimF [W, g] = d0 ≤ d. Thus G acts as a subgroup of FGLF (W ).
At this point it may be worth standing back and considering what we have

accomplished; starting with a finitary group, we have proved that it is indeed a
finitary group. This does not sound like much, but in fact we have made a great
deal of progress. While the original representation had no additional structure, the
new representation has been constructed according to a precise recipe and so has
many built-in properties. For instance, again by Theorem ??, if S has classical type
PCl, then G acts on W leaving invariant a form of the same type as the members
of S. Our original space might have been highly irreducible, say, a direct sum of
finitely many copies of some faithful finitary module. As is the case with the natural
modules for the groups we seek, our new space must be essentially irreducible since
each Gi has a unique nontrivial composition factor within it (see Theorem ?? below).
Consider now the implications of Proposition ?? and its corollary for the finitary

action of G on W . We learn that each Gi has in W a composition factor whose
kernel is contained in Ni and which is nearly natural for Gi/Ni. In this factor the
element g has degree at most d0. But from our choice of the ϕi, in any nearly natural
representation, g has degree at least d0. Therefore the degree is exactly d0; there is
a unique Gi-composition factor in W on which g acts nontrivially; and this factor
is nearly natural for Gi/Ni. If Gi/Ni is alternating then this factor is monomial,
admitting some quotient Zni−1m .Altni of Gi, since the restriction on the degree of g
forces any associated block of imprimitivity to have dimension 1.
We pull together some of the properties of our new finitary representation for G.

As G is faithful on W , we may identify G with its image in FGLF (W ).

( 4.3 ) Theorem. The locally finite simple group G is a subgroup of FGLF (W )
with F algebraically closed. For a fixed 1 W= g ∈ G, we have d0 = dimF [W, g] << κ.
Let S = {(Gi, Ni) | i ∈ I} be a Kegel cover for G having one of the types 1. through
5., and such that g ∈ Gi −Ni, for all i ∈ I.
(1) In its action on W , each Gi has a unique nontrivial composition factor.
(2) If the cover S has alternating type as in 1., then F has characteristic 0 and

the composition factor of (1) is monomial.
(3) If the cover S has classical type as in one of 2. through 5., then F has the

same characteristic p as each classical group Gi/Ni, the composition factor of (1) is



LOCALLY FINITE SIMPLE GROUPS OF FINITARY LINEAR TRANSFORMATIONS 25

nearly natural of degree ni, and the set {ni | i ∈ I} is unbounded. In cases 2., 3.,
and 4., G leaves invariant a nondegenerate form of the same type as that for the
classical groups Gi/Ni.

For each i ∈ I, let Hi = �gGiX and Mi = Hi ∩Ni.

( 4.4 ) Proposition. H = {(Hi,Mi) | i ∈ I} is a Kegel cover of G whose factors
are the same as those of S. If the cover S is of classical type, then the subgroups Hi
are unipotent-by-quasisimple in their action on W . If S is alternating, then the Hi
are abelian-by-simple.

Proof. The first sentence is immediate from Proposition ??.
As g acts nontrivally on only one Gi-composition factor in W , the same is true of

Hi. Therefore the kernel of the action on this factor is a unipotent normal subgroup,
and modulo this normal subgroup we get the action described above. In the case
of an alternating cover, our space W has characteristic 0; so a unipotent group
is torsion free. In a locally finite group such a group can only be trivial, so the
monomial quotient group must be all of Hi. 2

It is not hard to go one step further. If we select those members of H with Hi
perfect, then we actually have a Kegel cover of G which is contained in the heart
of S.
Corollary ?? provides us with a converse to Theorem ??(4). In that theorem

we saw that having an element of bounded representation degree in Kegel quotients
forces a locally finite simple group to be finitary. Now Corollary ?? says that in a fini-
tary, locally finite simple group, elements must have bounded representation degree
in their Kegel quotients. A little more can be squeezed out of these observations.

( 4.5 ) Theorem. A simple section of a finitary locally finite group is itself finitary.

To prove this, first find a Kegel cover for the simple section S. Pull the members of
this cover back to finite subgroups of the parent locally finite group. The arguments
of Proposition ?? and its corollary go through to prove that elements of the simple
section S have bounded representation degree in the Kegel quotients of the section.
Therefore by Theorem ??(4) the simple group S is finitary.

4.3. Alternating Groups

In this section we complete a proof of the following two theorems.

( 4.6 ) Theorem. A locally finite simple group which is infinite and finitary and
has a Kegel cover all of whose quotients are alternating groups is isomorphic to an
alternating group AltΩ, for some infinite set Ω.

( 4.7 ) Theorem. A locally finite simple group which is infinite and finitary in
characteristic 0 is isomorphic to an alternating group AltΩ, for some infinite set Ω.
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These theorems can be found in [?]. (See also [?].) The two results are seen
to be equivalent, using what we have proven earlier. Indeed, a Kegel cover of a
characteristic 0 group must have alternating type by Proposition ??. Conversely, in
the previous section we constructed a faithful finitary representation in characteristic
0 for any locally finite simple and finitary group that possesses a Kegel cover of
alternating type.
We isolate the alternating case from the classical because we are able to give a

nearly complete proof. Although the alternating case is a little different and a little
easier than the classical case, the proof given here is a good introduction to the more
difficult arguments. Indeed some of the results in this section have slightly easier
proofs if we use more permutation group theory, but we stay with proofs similar
in spirit to those of the general case. These are, in any event, not overly deep or
complex.
Assume then that we have an infinite, locally finite simple G which is finitary and

has a Kegel cover whose quotients are alternating groups as in Theorem ??(2). Thus
G ≤ FGLF (W ) where the algebraically closed field F has characteristic 0. As in
Proposition ??, G has the Kegel cover H = {(Hi,Mi) | i ∈ I}, where Hi/Mi l Altni .
By Maschke’s theorem, W = [W,Hi] ⊕ CW (Hi). The module [W,Hi] is monomial
for Hi. Its dimension is ni − 6, and the base group Mi l Zni−1m acts diagonally.
(Here 6 is 1 or 0 as m = 1 or m W= 1.)
The element g was originally chosen as an arbitrary nonidentity element. Let us

now assume that it was chosen to have odd prime order (as certainly was possible).
In each representation

Hi lMi.Altni
ϕi−→ GLFi(Wi) l GL(Qni−1) ,

we have kerϕi = Mi and d0 = deg g = dim[Wi, g] = s(p − 1) << ni, where the
element ϕi(g) is represented by s distinct p-cycles in the natural permutation rep-
resentation of ϕi(Hi) l Altni .
We also have the injections

ηi,j :Hi → Hj/Mj l Altnj
available to us, furnished by the Kegel cover for every j > i. Without further
information, this faithful permutation representation ofHi could have many different
types; but we also know that the element g is always represented by s distinct p-
cycles and no more. (We have d0 = s(p− 1); consider ϕj and the representation of
Hj on W .) This additional knowledge is enough for us to kill off the Kegel kernels
Mi, and to identify the injections ηi,j explicitly.

( 4.8 ) Proposition. Let the monomial group A l Zn−1m .Altn be a subgroup of
Alt∆, and let the base group of A be B l Zn−1m . Further assume that the element
g of A − B has odd prime order and is represented by s distinct p-cycles both in
Alt∆ and in the natural representation of A/B l Altn. If n >> sp, then there is a
subgroup C l Altn which contains g and complements B in A.

Proof. By Corollary ??, Ā = A/B l Altn is generated by at most e = 3+(n−
2)/s(p − 1) conjugates of ḡ, a p-element composed of s distinct p-cycles. (One of
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these can be taken to be ḡ itself). For each such conjugate h̄j of ḡ, choose a preimage
hj in A which is a conjugate of g. (Take care to lift ḡ to g.) Let C be the subgroup
of A generated by the various hj . As C̄ = Ā, we have A = BC; so C is isomorphic
to Zn−1k .Altn, for some divisor k of m. We claim that k = 1. Indeed C moves at
most esp = (3+ (n− 2)/s(p− 1))sp points of ∆, a number only slightly larger than
n and a good deal less than 2n since p is odd and n >> sp. On the other hand, it is
an easy exercise to prove that any nontrivial elementary abelian q-group Zn−1q has
no faithful permutation representation of degree less than (n− 1)q, which is at least
on the order of 2n. Thus no prime divisor q of k exists; and k = 1, as claimed. 2

( 4.9 ) Lemma. Root elements, that is, 3-cycles exist in G. More precisely, there is
an element t of order 3 and a subset J of I, such that HJ = {(Hj ,Mj) | i ∈ J} ⊆ H
is a subcover and t acts as a 3-cycle in Hj/Mj l AltΩj , for each j ∈ J .

Proof. Choose an i ∈ I such that ni >> sp, as in Proposition ??, for Hi/Mi l
Altni . Restricting the monomial module [W,Hi] to the subgroup Ci l AltΩi guaran-
teed by the proposition, we have a natural module. In particular, a 3-cycle t of Ci has
degree 2 on [W,Hi] and so degree 2 on W . But then it also has degree 2 on [W,Hj ],
a monomial module for Hj , for every j ≥ i. The image of t in AltΩj l Hj/Mj is
thus also a 3-cycle, for all j ∈ J = {j ≥ i}. 2

( 4.10 ) Lemma. For all j ∈ J , we have Mj = 1 and Hj l AltΩj .

Proof. For each j ∈ J and any j < k ∈ J , the monomial group Hj is embedded
isomorphically in Hk/Mk l AltΩk . Its image contains 3-cycles of Hk/Mk by Lemma
??. Therefore, by Proposition ??, we must have Mj = 1 and Hj l AltΩj . 2

( 4.11 ) Lemma. For all i, j ∈ J , the injection ηi,j of Hi l AltΩi with |Ωi| = ni
into Hj l AltΩj with |Ωj | = nj is induced by a unique injection of sets η∗i,j :Ωi → Ωj.

Proof. By Lemma ??, in this embedding 3-cycles go to 3-cycles; so this is an
immediate consequence of Proposition ??. 2

Now let Ω = lim−→ Ωj be the direct limit of the finite sets Ωj with respect to the

injections η∗i,j .

( 4.12 ) Proposition. The group G is isomorphic to AltΩ.

Proof. The element t of Lemma ?? is a 3-cycle in each Hj l AltΩj , for j ∈ J ; so
it acts on Ω as a 3-cycle. For any triple α,β, γ from Ω, there is an i with α,β, γ ∈ Ωi.
Therefore the subgroup Hi l AltΩi of G contains the 3-cycle (α,β, γ) of AltΩ. All
possible 3-cycles are in G, so the simple group G is all of AltΩ. 2

4.4. Root Elements: B

The previous subsection handles the alternating case (2) of Theorem ??, so from
now on we may assume we are in the classical case (3), with a Kegel cover having
one of the types 2. through 5.
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In the alternating case we found root elements by first splitting each Kegel quo-
tient off its kernel and then using the structure of the natural module. The same is
done in the classical case, starting with the following proposition which was pointed
out by Ulrich Meierfrankenfeld. (The statement E = Op(E) says that E has no
nontrivial homomorphic image which is a p-group.)

( 4.13 ) Proposition. Let finite E = Op(E) act on the finite dimensional K-
vector space U in characteristic p with a unique nontrivial composition factor. As-
sume also that E = E0Op(E) for E0 ≤ E implies E = E0. Then [E,Op(E)] ≤
CE(U).

Proof. We proceed by induction on dimK U . Set Q = [E,Op(E)].
First assume that [U,Q] is not trivial as a KE-module. Then since E = Op(E),

the unique nontrivial composition factor is in [U,Q] = [U,E]. As Q itself is unipo-
tent, we also have [U,Q] < U .
Let Y be an E-invariant hyperplane of U which contains [U,Q] = [U,E]. By

induction we have Y ≤ CU (Q). In particular, the action of Q on U is quadratic:
[U,Q,Q] = 0. Choose x ∈ U − Y , so that U = Kx ⊕ Y and [U,Q] = [x,Q] as
K-space. By quadratic action the set W = {[x, q] | q ∈ Q} is an FpQ-submodule of
U . Indeed it is an FpE-submodule since [U,E] ≤ CU (Q), so that, for q ∈ Q and
e ∈ E,

[x, q]e = [xe, qe] = [x+ [x, e], qe] = [x, qe] + [[x, e], qe] = [x, qe] ∈W .

Consider now the KE-module Ū = U/CU (E). The image of [U,E] is an irre-
ducible KE-submodule T̄ with T̄ = KW̄ , because [U,E] = [x,Q] as a K-space. As
an FpE-module (of possibly infinite dimension), T̄ has a nonzero irreducible sub-
module W̄0 within finite W̄ . Thus T̄ = KW̄ = KW̄0 is a sum of FpE-irreducibles
and so is completely reducible. Therefore W̄ is complemented in T̄ ; there is a FpE-
submodule Z̄ of T̄ with T̄ = W̄ ⊕ Z̄.
For an arbitrary e ∈ E, we have

x̄e = x̄+ [x̄, e] = x̄+ (w̄ + z̄) = x̄+ [x̄, q] + z̄ = x̄q + z̄ ,

where z̄ is in Z̄ and w̄ is in W̄ , so that w̄ = [x̄, q], for some q ∈ Q. Therefore
(x̄+ Z̄)e = (x̄+ Z̄)q, and generally

(x̄+ Z̄)E = (x̄+ Z̄)Q .

By a Frattini argument, E = QNE(x̄+ Z̄); so by assumption E = NE(x̄+ Z̄). That
is, for each e ∈ E, we have [x̄, e] ∈ Z̄. In particular, for each q ∈ Q, this gives
[x̄, q] ∈ Z̄; but already [x̄, q] ∈ W̄ . Therefore [x̄, q] ∈ W̄ ∩ Z̄ = 0̄. We conclude that
[x̄, Q] = 0̄, which is not true since W̄ is nonzero. The contradiction shows that this
case can not occur, and therefore [U,Q] must be trivial as a KE-module.
Dually, U/CU (Q) is a trivial E-module. Therefore

[U,Q,E] = [E,U,Q] = 0 ,

whence [Q,E,U ] = 0 by the Three Subgroups Lemma [?, (8.7)]. As E = Op(E), we
have [Q,E] = [Op(E), E,E] = [Op(E), E] = Q; that is, Q is trivial on U . 2
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( 4.14 ) Corollary. For all i, Hi splits over Op(Hi).

Proof. Let E be a minimal supplement to Op(Hi) in Hi. In particular E is
perfect. As E is finite, there is in W an E-invariant finite dimensional subspace U
with W = U ⊕ C, for some C ≤ CW (E). Now E is faithful in its action on U and
satisfies all the hypotheses of the proposition. Therefore perfect E intersects Op(Hi)
only in a central p-subgroup. The Schur multiplier of the classical group Hi/Mi in
characteristic p has trivial p-part [?, p.302], so this intersection is trivial. 2

( 4.15 ) Proposition. Let H be a classical group Cln(q), for n >> 0, and let U
be an extension of a trivial KH-module Z by a nearly natural KH-module. Then
either
(i) U = Z ⊕ [U,H], or
(ii) H l Sp2m(q) with q even, and U is a nondegenerate but defective nearly

natural module for H l Ω2m+1(q) with symplectic radical of dimension 1.
Proof. Since the dual of a nearly natural module is also nearly natural, the

proposition is equivalent [?] to the cohomological statement that H1(H,Fnq ) is 0
but for the exceptional case (ii) where it has dimension 1. As such, the result is
reasonably well-known; see, for instance, [?, Theorem 2.14] or [?, §1].
In fact, this result can be proven in an elementary fashion using generation results

like Theorem ?? and Proposition ??. Consider the case in whichH is a unitary group
with n ≥ 5. We may assume that Z has dimension 1.
As Ȳ = Y/Z is nearly natural, a transvection t ofH has commutator of dimension

1 or 2 on Y , hence centralizer CY (t) of codimension 1 or 2. Clearly CY (t) contains Z,
so W̄ = CY (t) has the same codimension 1 or 2 in Ȳ . The subspace W̄ is invariant
under CH(t). As n ≥ 5, it can only be the hyperplane CȲ (t). Therefore CY (t) has
codimension 1, and t is a transvection on Y .
By Proposition ??, the group H is generated by n of its transvections. Therefore

[U,H] has dimension at most n. But this commutator must cover the nearly natural
quotient U/Z of dimension n. We conclude that [U,H] has dimension exactly n, and
U = Z ⊕ [U,H], as claimed.
This handles the unitary case, and the argument for the special linear case is

essentially identical. (In large enough dimension n, these groups are generated by n
transvections [?, Theorem 4.9].) For H symplectic in odd characterisitic, the result
is trivial since Z(H) = {±1} and [U,H] = [U,Z(H)] intersects Z trivially. For H
symplectic in characteristic 2 and of dimension 2n > 2, the argument given above
for the unitary groups can be adapted. Transvections again act as transvections, but
now (see Theorem ??) we need 2n+ 1 transvections to generate H. The argument
of the previous paragraph then suggests the (real) possibility of a nonsplit extension
with a trivial submodule of dimension 1, but larger trivial submodules can be ruled
out. Similar arguments for the orthogonal groups require the use of Siegel elements
and so are messier. 2

( 4.16 ) Theorem. G contains root elements in its action on W .

Proof. Choose an i, and let L be a complement to Op(Hi) in Hi. (If L is
symplectic in characteristic 2 so that L l Sp2n(q) l Ω2n+1(q), then replace L by
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an orthogonal subgroup L0 l Ω62n(q).) In W there is a unique L-composition factor
and that is nearly natural. Therefore [W,L] is an extension of a trivial KL-module
Z by this nearly natural composition factor. By the previous proposition, we have
[W,L] = Z ⊕ [W,L,L]; but L is perfect, so [W,L] = [W,L,L] is nearly natural for L
and Z = 0. ThusW = [W,L]⊕CW (L). In the nonorthogonal cases, a transvection of
L on its natural module is also a transvection on W . In the orthogonal case, a Siegel
element s of L will also have commutator dimension 2 on W . As L is irreducible on
nearly natural [W,L], the L-invariant forms on this module are unique up to scalar
multiples. Therefore this dimension 2 commutator which is singular for L is singular
in the orthogonal geometry on W , and s is a Siegel element onW . Thus in all cases,
the root elements of L become root elements of G on W . 2

4.5. The Rest

Now that we have root elements, the end of the proof is in sight, although some of
the arguments are still rather delicate in nature. We present this part in less detail.

4.5.1. Quasisimple Complements: C
Unlike the alternating case, for the classical groups there are Kegel covers which are
not just modified quasisimple covers. To pave the way for the geometric reconstruc-
tion to come, we replace our given Kegel cover by a related quasisimple cover. If
we think of our cover as having parabolic type, what we now wish to do is restrict
our attention to Levi subgroups. From the geometric viewpoint, we want only to
consider subspaces with trivial radical.
Originally the element g was chosen as an arbitrary nonidentity element. It is

now convenient to go back and rechoose so that it is a root element of G. This is
possible by Theorem ??, and allows us to assume that each H is generated by root
elements.
For each i ∈ I, let

Li = {L ≤ Hi |L ∩Op(Hi) = 1, L quasisimple of type Cl} .
Then set L = ∪iLi.

( 4.17 ) Proposition. L is a quasisimple cover of G.

Consider the case in which Cl = Sp and F has odd characteristic. For each i ∈ I,
we need to find a j ∈ I and an L ∈ Lj with Hi ≤ L. If Hi itself is quasisimple, there
is nothing to prove; so we may assume that this is not the case.
Choose a j with Hi ≤ Hj but Hi∩Mj = 1. The symplectic spaceW is nondegen-

erate, and in particular CW (G) = 0. Thus we may choose our j so that additionally
[W,Hi]∩C[W,Hj ](Hj) = 0. (Some argument is needed here. This is actually a “Kegel
cover” property for the irreducible G-module W .) Therefore [W,Hi] is embedded
isometrically in the nearly natural module X̄ = [W,Hj ]/C[W,Hj ](Hj) for the sym-
plectic group H̄ = Hj/Op(Hj) l Sp2n(q). Set k = dim[W,Hi] = dim[X̄, H̄i]. As Hi
is not quasisimple, we have k < 2n.
By Theorem ??, there is a set Σ̄ of 2n − k transvections t̄ of H̄ such that H̄ =

�H̄i, Σ̄X. We lift each individual transvection t̄ of Σ̄ to a transvection t of Hj and
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call the corresponding set of 2n − k transvections Σ. Consider L = �Hi,ΣX. By
construction L̄ = H̄ with X̄ = [X̄, L̄] a nearly natural module of dimension 2n.
However

dim[W,L] ≤ dim[W,Hi] + dim[W,Σ] ≤ k + (2n− k) = 2n .
We conclude that [W,L] of dimension 2n is a nearly natural module for the quasi-
simple group L l H̄ l Sp2n(q). In particular Hi ≤ L ∈ Lj , as required.

4.5.2. Reconstructing the Space: D
In Theorem ?? the space KV was replaced by the new, essentially irreducible
G-module FW ; but this new space is still not ideal. The field F may not be the nat-
ural one for the group G. Indeed since F is the algebraic closure of an ultraproduct
of finite fields it typically has large transcendence degree. Now we construct another
new space on which G acts, this one defined over a direct limit of finite fields which
is thus locally finite.
We begin with a result of Hartley and Shute:

( 4.18 ) Theorem. ([?, Theorem C.]) Let Fq1 and Fq2 be two finite fields, and
let G1 l Φ(Fq1) and G2 l Φ(Fq2) be two quasisimple Lie type groups of the same
type Φ. Then G1 is isomorphic to a subgroup of G2 if and only if Fq1 is isomorphic
to a subfield of Fq2 . In this case, any two subgroups of G2 isomorphic to G1 are
conjugate via an automorphism of G2.

We are particularly interested in the case where each Gi is a classical group,
Cln(Fqi). There is a canonical subgroup of the matrix group G2 isomorphic to
G1, namely the corresponding matrix subgroup over the subfield Fq1 of Fq2 . The
embedding ofG1 as this subgroup is induced by the canonical Fq1-linear map ofX1 l
Fnq1 into X2 l Fnq2 . The space X2, as Fq1G1 module, is a direct sum of |Fq1 :Fq2 |
isomorphic copies of X1, permuted among themselves by Fq2 scalar multiplication.
In the cases Cl ∈ {Sp, SU,Ω}, each automorphism of G2 comes from conjugation

by a matrix of GLFq2 (X2) which normalizes G2 followed by an automorphism of the
field Fq2 (if we assume that n > 8 when Cl = Ω). Thus in these cases, Theorem ??
can in part be rephrased in the geometric form:

( 4.19 ) Theorem. Let η be an isomorphism of the quasisimple classical group
G1 l Cln(Fq1) into G2 l Cln(Fq2), where Cl ∈ {Sp, SU,Ω} and n > 8. Then there
is an isomorphism σ of Fq1 into Fq2 , and a σ-semilinear injective isometry η

∗ of
X1 l Fnq1 into X2 l Fnq2 which induces η. The map η∗ is uniquely determined up to
scalar multiplication by a member of Fq2 .

A new proof (and extension) of Hartley and Shute’s Theorem ?? has been given
by Liebeck and Seitz [?]. The basic observation is that root elements of G1 must be
mapped to root elements of G2. To convince yourself of this, think of how the group
of lower unitriangular matrices over the subfield Fq1 fits into that over the field Fq2 .
The center of the small subgroup (Sylow in SLn(Fq1)) falls into the center of the
large subgroup (Sylow in SLn(Fq2)). But these centers are in both cases composed
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of transvections, root elements in the case Cl = SL. For any abstract embedding η
of SLn(Fq1) into SLn(Fq2) consideration of nilpotency class shows that the center
of the (small) Sylow group of the image of η must lie in the center of the large Sylow
subgroup. Therefore root elements are taken by η to root elements.
The apparently small change of allowing G1 and G2 to have different dimensions

produces drastic results. Concerning an arbitrary injection η of G1 l Cln1(Fq1)
into G2 l Cln2(Fq2), we can say almost nothing. Indeed, from any pair of fields
Fq1 and Fq2 and any degree k permutation representation of G1, we can construct
an embedding of G1 in Clk(Fq2). If we now require that η respect root elements
(rather than proving it along the way), then order is restored:

( 4.20 ) Theorem. Let η be an isomorphism of the quasisimple classical group
G1 l Cln1(Fq1) into G2 l Cln2(Fq2), where Cl ∈ {Sp, SU,Ω} and n1 > 8. Assume
additionally that, for the root element g of G1, the element η(g) is a root element of
G2. Then there is an isomorphism σ of Fq1 into Fq2 , and a σ-semilinear injective
isometry η∗ of X1 l Fn1q1 into X2 l Fn2q2 which induces η. The map η∗ is uniquely
determined up to scalar multiplication by a member of Fq2 .

The result can be proven using the earlier result, or it can be given a direct proof
from first principles since root elements carry so much information about the related
geometry. As mentioned before, a classical group is generated by what is essentially
the smallest possible number of root elements (see Theorem ?? and Proposition
??). Since η respects root elements, we find that Y = [X2, η(G1)] has dimension
essentially n1 and so must look something like the natural module X1 tensored up
to Fq2 . This is the beginning of the construction of the semilinear map. Theorem
?? gives the action of η(G1) on the nondegenerate and nearly natural module Y ,
and the only way of extending this action to all of X2 is by making η(G1) trivial on
Y ⊥.
Some care must be taken when the ni are both odd, the qi are even, and Cl = Ω.

In this case neither X1 nor X2 are irreducible, and there are two fundamentally
different embeddings, depending upon whether or not the symplectic radical of X1
is mapped into that of X2 or not.
We are now in a position to reconstruct the natural space on which our group G

acts in the cases Cl ∈ {Sp, SU,Ω}. For each L ∈ L, we have L l ClnL(FqL). Let
XL l FnLqL be a natural FqLL-module. To create our G-space X, it will be helpful to
fix some member L ∈ L and prune L to the quasisimple cover Q = {Q ∈ L |L ≤ Q}.
By the previous theorem, for each Q ∈ Q, there is a field automorphism σL,Q and
a σL,Q-semilinear map η

∗:XL → XQ which induces the inclusion L ≤ Q. This map
η∗ is unique up to scalar multiplication by some member of FqQ . For each Q ∈ Q,
choose and fix one of these multiples η∗L,Q. Next, for each pair P,Q ∈ Q with
P ≤ Q, there is a collection of maps ρ which are σP,Q-semilinear maps from XP to
XQ, inducing the inclusion P ≤ Q. Pairwise these maps ρ differ only by a scalar
multiple from FqQ . In particular, their images are FqP -subspaces of XQ with trivial
pairwise intersections. On the other hand, the restriction of the inclusion P ≤ Q
from P to its subgroup L is the inclusion L ≤ Q. Therefore exactly one of the maps
ρ will satisfy

η∗L,P ρ = η∗L,Q .
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In this case, we set η∗P,Q = ρ.
The injective maps η∗P,Q and σP,Q, for all P,Q ∈ Q with P ≤ Q allow us to

construct the vector space X = lim−→ XQ over the field E = lim−→ FqQ . We then see that
X is a finitary EG-module. We can further construct an invariant nondegenerate
form of type Cl on X as the direct limit of invariant forms on the XQ, having used
a L-invariant nondegenerate form to normalize as before. (Indeed a small amount
additional argument would show that E is a subfield of F and that X is isometric
to an E-subspace of W .) In these cases, this completes the reconstruction D.
There are two related reasons why the case Cl = SL must be treated differently

from that of the other classical groups. First, the result corresponding to Theorem
?? must allow for the transpose-inverse automorphism; geometrically, we must allow
for dualities as well as semilinear maps. The second difficulty arises because, in the
proof of the result corresponding to Theorem ??, there is no canonical complement
Z⊥ to Z = [X2, η(G1)] available for unique extension of the action on Z. The answer
to both problems is to consider Gi as acting on the direct product of the spaces Xi
and Yi = X

T
i preserving the natural nondegenerate pairing p:Xi × Yi → Fqi given

by p(x, y) = xy.

( 4.21 ) Theorem. Let η be an isomorphism of the quasisimple classical group
G1 l SLn1(Fq1) into G2 l SLn2(Fq2) with n1 > 2. Assume additionally that, for
the root element (transvection) g of G1, the element η(g) is a root element of G2.
Set Xi = F

ni
qi and Yi = X

T
i .

Then there is an isomorphism σ of Fq1 into Fq2 , and a σ-semilinear injective
isometry η∗:X1 × Y1 → X2 × Y2 which induces η and such that either
(a) η∗(X1) ≤ X2 and η∗(Y1) ≤ Y2; or
(b) η∗(X1) ≤ Y2 and η∗(Y1) ≤ X2.

In any event the map η∗ is uniquely determined up to scalar multiplication by a
member of Fq2 .

Part (b) describes dualities as opposed to semilinear maps. The proof of unique-
ness involves the observation that the set of transvections fixing a 1-space of X1
must either fix a 1-space of X2 (case (a)) or a hyperplane of X2 (case (b)), but does
not fix both since n1 > 2. A canonical complement to [X2, η(G1)] in X2 is now
provided by [Y2, η(G1)]

⊥ (and similarly with the roles of X2 and Y2 reversed).
To find paired spaces on which G acts, we once again prune L down to its

subcover Q of all members containing some fixed L. This and the theorem allow us
to construct as before field maps σL,Q and semilinear isometries η

∗
L,Q. Here we must

choose, for all Q including L, paired spaces XQ and YQ admitting Q. We make our
choices so that always η∗L,Q takes XL into XQ and YL into YQ. Continuing as before,
for each pair P,Q ∈ Q with P ≤ Q, we find a scalar collection of σP,Q-semilinear
maps from XP ×YP to XQ×YQ, each of which induces the inclusion P ≤ Q. Exactly
one of these possible choices for η∗P,Q will make true the equation

η∗L,P η
∗
P,Q = η∗L,Q ,

and this is the choice we make.
Our original choices for L guarantee that always η∗P,Q takes XP into XQ and YP

into YQ. Thus we can define the pair of spaces X = lim−→ XQ and Y = lim−→ YQ over
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the field E = lim−→ FqQ . On X × Y there is an G-invariant nondegenerate pairing

which is the direct limit of those on the various XQ × YQ. Our reconstruction is
complete for the groups of type SL as well.

4.5.3. Identifying the Group: E
At the close of the previous subsection we had identified our group G as a subgroup
of one of FSpE(X, s), FSUE(X,u), FΩE(X, q), or TE(Y,X). It remains to prove
that we have equality. This is now largely a matter of book-keeping. Using the
construction of X as a direct limit (and Y in the final case), we can reveal the large
finitary group as a direct limit itself, and that can then be seen to be isomorphic to
G, the direct limit of the Q in Q. Alternatively we can prove that, in its action on
X (and Y ), the group G contains every root element of the larger group. At that
point results like Theorem ?? prove the equality. The proof of Theorem ?? is then
complete.
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Appendix

A PRIMER ON ULTRAPRODUCTS OF GROUPS

A. Introduction

Let G be a group and {Ni | i ∈ I} be a set of normal subgroups. When iNi = 1,
there is a natural embedding of G in the Cartesian product i∈I Ḡi = i Ḡi of the
groups G/Ni = Ḡi. This allows us to transfer many properties of the groups Ḡi
to the group G. For instance, if each Ḡi has exponent bounded by e, then so does
G. Of particular interest is the ability to combine modules for the individual Ḡi
together into one large module for G.
Of course many groups G do not have this rich normal structure. Indeed in the

main body of the paper we are primarily interested in simple groups G. What every
group does have is subgroups, so it would be highly desirable to write G as some
sort of sub-Cartesian product of certain of its subgroups Gi. This we do using the
ultraproduct of groups. Ultraproducts allow us to patch together global properties
of G out of local properties of the Gi.
The reader may notice that the proofs presented here have a repetitive nature.

This is because the general ultraproduct is a model theoretic construct which trans-
fers first order properties from the coordinate objects to a global object that is a
quotient of the Cartesian product. As such, ultraproducts have many interesting
applications outside of the group theoretic realm, but we shall not discuss them
here.
We would prefer not to require information on all subgroups of G, but if not

all then how large a set of subgroups {Gi | i ∈ I} (where I is some indexing set)
is needed? Before the condition iNi = 1 was enough, but a normal subgroup
Ni arrives with more luggage than an arbitrary subgroup Gi. Certainly we must
have iGi = G, but now this is not enough. Equations such as g · h = k must be
verifiable entirely within some coordinate, so there must be an i for which all three
of g, h, k belong to Gi. (For instance, if g and h are in no common Gi, then their
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natural images in iGi commute.) In fact we want still more. The motivating
observation is that every set is the direct limit of its finite subsets, whence every
group is the direct limit of its finitely generated subgroups. A suitable set {Gi | i ∈ I}
of subgroups will be one which has G as its direct limit. As defined in the main
body, a set of subgroups {Gi | i ∈ I} of G is a local system for G if iGi = G and,
for each pair i, j from I, there is an k with �Gi, GjX ≤ Gk. As desired, the group
G is the direct limit of the members of any local system C; so all the information
describing G is to be found in the members of C together with their containment
relations.
Starting with a local system C = {Gi | i ∈ I}, we attempt to reconstruct G within
iGi. There is a natural “diagonal embedding” which injects G as a set into iGi

via g )→ gC:
gCi = g if g ∈ Gi ,
gCi = 1 if g W∈ Gi .

Unfortunately we will not, in general, have

gChC = (gh)C ,

since the two sides differ at any coordinate i for which Gi contains exactly one of g
and h. Still the equality is true “almost everywhere,” and this is the essence of the
ultraproduct construction.

B. Filters, Ultrafilters, and Ultraproducts

Let I be any nonempty set. A filter F on I is a set of subsets of I which satisfies
two axioms:

1. if A,B ∈ F , then A ∩B ∈ F ;
2. if A ∈ F and A ⊆ B, then B ∈ F .

If the empty set is in F , then by 2. the filter F must in fact be the complete power
set 2I . To avoid 2I , the trivial filter, the axiom ∅ W∈ F is sometimes included; but
we do not make this assumption.
An example of a nontrivial filter on I is the principal filter Fa composed of all

subsets of I which contain the element a ∈ I. For infinite I, the cofinite filter
composed of all cofinite subsets of I is also nontrivial. (A subset is cofinite if its
complement is finite.)
We say that the set I is directed by the partial order ≤ if, for every pair i, j of

elements of I, there is a k ∈ I with i ≤ k ≥ j. In this case define

F(i) = {a ∈ I | i ≤ a} .

The nontrivial filter generated by the directed set (I,≤) is then

F(I,≤) = {A |A ⊇ F(i), for some i ∈ I} .

If the filter F on I contains A and B with A∩B = ∅, then F is the trivial filter
2I . A filter which instead satisfies:
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3. for all A ⊆ I, A ∈ F if and only if I −A W∈ F .
is called an ultrafilter and is a maximal nontrivial filter. Principal filters are ultra-
filters, but the cofinite filter is not. In general the filter generated by a directed set
is not an ultrafilter. (Exercise: all ultrafilters on finite I are principal.)
The union of an ascending chain of nontrivial filters on I is itself a nontrivial

filter, so by Zorn’s lemma every nontrivial filter is contained in an ultrafilter. Thus
completing the cofinite filter gives us a nonprincipal ultrafilter on each infinite set
I. (Exercise: a nonprincipal ultrafilter contains the cofinite filter.) We mildly abuse
terminology by saying that any ultrafilter containing F(I,≤) is an ultrafilter generated
by the directed set (I,≤).
The following property of ultrafilters is used often.

( B.1 ) Lemma. If F is an ultrafilter on I, then for any finite coloring of I there
is exactly one color class which belongs to F.

The case of a 2-coloring is just the axiom 3., and the lemma follows by induction.
Now suppose that {Gi | i ∈ I} is a set of sets (typically the underlying sets of

a collection of groups, rings, fields, etc.) and that F is an ultrafilter on I. On the
Cartesian product iGi define an equivalence relation ∼F by

(xi)i∈I ∼F (yi)i∈I iff {i ∈ I |xi = yi} ∈ F .
The ultraproduct F Gi is then the quotient of the set iGi by the equivalence
relation ∼F . As there may be many different ultrafilters, there are also different
ultraproducts of the same set of sets. (Exercise: what happens if F is principal?)
As an instance of Lemma ?? we have

( B.2 ) Lemma. If each set Gi has finite cardinality at most q, then F Gi has
cardinality at most q.

Proof. For each i, color the individual members of Gi with the colors 1, 2, . . . , q,
at most one element of Gi receiving any given color. The coordinate positions of
each element g = (gi)i∈I in the Cartesian product are q-colored. By Lemma ??
the element g is equivalent with respect to F to exactly one of the monochromatic
elements, of which there are at most q. 2

A more difficult exercise is to prove that an ultraproduct of arbitrary finite sets
is either finite or uncountably infinite.
Extra structure on the Gi can be transferred to the ultraproduct.

( B.3 ) Proposition. An ultraproduct of groups is a group.

Proof. Since the Cartesian product Γ = iGi is a group, it is enough to
prove that that the multiplication of Γ induces a well-defined multiplication on the
ultraproduct ΓF = F Gi. The associativity, identity, and inverses of ΓF will then
be naturally induced by those of Γ.
Let g1 = (gi1)i∈I and g2 = (gi2)i∈I be a pair of elements from Γ which are

equivalent in ΓF , and let h1 and h2 be a second such pair. Equivalence implies that
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the subsets Jg = {j ∈ I | gj1 = gj2} and Jh = {j ∈ I |hj1 = hj2} both belong to
F , so by 1. their intersection Jg ∩ Jh does as well. This intersection is certainly
contained in J = {j ∈ I | gj1hj1 = gj2hj2}, so J ∈ F by 2. That is, g1h1 and g2h2
are equivalent with respect to F ; and multiplication in ΓF is indeed well-defined. 2

A similar result is

( B.4 ) Proposition. An ultraproduct of fields is a field.

Proof. This is a little more subtle. A Cartesian product of groups is a group,
whereas a Cartesian product of fields is only a commutative ring with identity.
Everything proceeds as with groups, except we must additionally check that in the
ultraproduct we can invert nonzero elements. Indeed an element g is nonzero if and
only if (it is represented by elements for which) the set of coordinate positions i
with gi = 0i is not in F . But then the set of positions with gi W= 0i is in F by 3.
The element with g−1i in those positions and 0i elsewhere is (a representative of) an
inverse for g in the ultraproduct. 2

We shall henceforth blur the distinction between an element of the ultraproduct
and the elements of the Cartesian product which represent it. For the calculation
of Proposition ?? it was enough that F be a filter, whereas Proposition ?? uses the
full strength of the ultrafilter definition.
A typical consequence of Lemma ?? is that an ultraproduct of bounded finite

fields is finite. An arbitrary ultraproduct of finite fields is either finite or has un-
countable transcendence degree, by the remark which follows Lemma ??. (Exercise:
(i) prove that if, for some prime p, we have {i ∈ I | char Fi = p} ∈ F , then the
ultraproduct of fields F Fi has characteristic p; (ii) prove that if there is no p for
which (i) holds, then F Fi has characteristic 0.)
The forming of ultraproducts commutes with the taking of products. We leave

as an Exercise the proof of

( B.5 ) Lemma. There is a natural isomorphism between F Ai × F Bi and
F(Ai ×Bi).

To prove that group multiplication in the Cartesian product iGi induces a
well-defined multiplication for the ultraproduct F Gi, we needed to show that the
individual coordinate multiplication functions Gi × Gi → Gi induce a well-defined
global function. Suppose more generally that, for each i ∈ I, we have a set map
ϕi:Ai → Zi, where Ai and Zi are arbitrary sets. The ϕi become the coordinate
functions of a map ϕ: iAi → i Zi. Assume x = (xi)i∈I and y = (yi)i∈I are
equivalent in iAi with respect to the ultrafilter F , and set J = {i ∈ I |xi = yi} ∈
F . Then K = {i ∈ I |ϕi(xi) = ϕi(yi)} contains J and so also belongs to F . That is,
in i Zi the two elements ϕ(x) and ϕ(y) are equivalent with respect to F . Therefore
the map ϕ: iAi → i Zi induces a well-defined map from F Ai to F Zi. We
denote this map by ϕF .
As with group multiplication, many properties of algebraic objects are described

in terms of the behavior of certain maps. For instance, the fact that the abelian
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group Mi is a module for the ring Ri is equivalent to certain properties of the
function ϕi:Mi × Ri → Mi given by ϕi(m, r) = mr. The coordinate maps ϕi can
now be sewn together to produce an ultraproduct map ϕF , and properties which can
be verified in individual coordinates are lifted to the full ultraproduct. We discover
that the abelian group M = FMi is a module for the ring R = F Ri.
We can iterate this observation. If each Vi is a vector space over the field Fi,

then V = F Vi is a vector space over F = F Fi. If indeed Vi is an FiGi-module,
for some group Gi, then V is an FH-module where H = F Gi. We restate this in
the language of representation theory.

( B.6 ) Theorem. Let I be an index set and F an ultrafilter on I. For each
i ∈ I, let ϕi:Gi → GLFi(Vi) be a representation. Then ϕF : F Gi → GLF (V ) is a
representation, where F = F Fi and V = F Vi. 2

C. Mal’cev’s Representation Theorem

We are now ready to combine remarks from the previous two sections. Let G be
a group and C = {Gi | i ∈ I} a local system for G. Let the index set I be given a
direct ordering so that i ≤ k ≥ j implies �Gi, GjX ≤ Gk. We say that such a directed
set is compatible with the local system C. There may be many compatible ways of
directing I. The most obvious is “i ≤ k if and only if Gi ≤ Gk”, but a slightly
different order is used for the proof of Theorem ?? in the main body of the paper.
Let F be an ultrafilter generated by the directed set (I,≤).

( C.1 ) Theorem. The injection g )→ gC provides an isomorphism of G into

F Gi.

Proof. The ultraproduct formalizes our earlier statement that gChC and (gh)C

agree “almost everywhere.” They agree on a member J of F and so are equal in
the ultraproduct. Indeed, if g ∈ Ga and h ∈ Gb, then (gC)i = g for i ∈ F(a) ∈ F
and (hC)i = h for i ∈ F(b) ∈ F . Therefore (gC)i(hC)i = gh for i ∈ F(a)∩F(b) ∈ F .
On the other hand, for i ∈ F(a) ∩ F(b) we have g ∈ Gi ≥ Ga and h ∈ Gi ≥ Gb.
Therefore gh ∈ Gi, and we have (gh)Ci = gh for every i ∈ F(a)∩F(b) ∈ F . We may
take J = F(a) ∩F(b). 2

Combining this theorem with Theorem ??, we have

( C.2 ) Theorem. For each i ∈ I, let ϕi:Gi → GLFi(Vi) be a representation.
Then ΦF :G → GLF (V ) is a representation, where F = F Fi, V = F Vi, and
ΦF is the restriction of ϕF to G, ΦF = ϕF |G. 2

Exercise: the element g ∈ G is in ker(ΦF), the kernel of ΦF , precisely when
{i ∈ I | g ∈ ker(ϕi)} ∈ F .
We have already seen that the basic defining properties of the coordinate algebraic

objects are transferred to the ultraproduct. The rules which check the existence of an
inverse in a field or define the action of a module are stated in terms of finite subsets
of the object under concern and their relationships. Their validity in individual
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coordinates breeds their validity in the ultraproduct. A more specialized case of this
is:

( C.3 ) Theorem. Let F be an ultrafilter on the index set I, and let k be an
integer. If, for each i ∈ I, the dimension of the vector space Vi over the field Fi is
k, then the dimension of V = F Vi over F = F Fi is k.

Proof. Subsets of the Cartesian product i Vi of size n larger than k are
linearly dependent over the ring i Fi. Consider vj = (vij)i∈I ∈ i Vi, for 1 ≤ j ≤
n. Choose αj = (αij)i∈I so that, for each i, j αijvij = 0 is a nontrivial linear
dependence. We claim that not every αj is equivalent to 0 with respect to F . Let
Ij = {i ∈ I |αij = 0}. If each Ij is in F , then j Ij is nonempty by 1. and, for i in
this intersection, j αijvij = 0 is a trivial linear dependence, against construction.
This proves the claim. Therefore any n elements vj of V are linearly dependent over
F , and dimF V is at most k.
Now let vj = (vij)i∈I , for 1 ≤ j ≤ k, be elements of i Vi with {vij | 1 ≤

j ≤ k} linearly independent, for each i. We claim that the vj represent F -linearly
independent elements of the ultraproduct V .
Suppose that

k

j=1

αjvj = 0V ,

for αj = (αij)i ∈ F . That is, k
j=1 αjvj ∼F 0 ∈ i Vi, for αj = (αij)i∈I ∈ i∈I Fi.

Thus, for some K ∈ F and all i ∈ K, k
j=1 αijvij = 0 ∈ Vi. By linear independence,

αij = 0 ∈ Fi, for all i ∈ K and all 1 ≤ j ≤ k. That is, αj and 0 as elements of
i Vi agree in the coordinate positions of K ∈ F . They are therefore equal in the

ultraproduct; and αj = 0F , for 1 ≤ j ≤ k, as required. 2

Generally in the ultraproduct construction, any first order sentence will hold
globally provided it holds often enough locally, that is, on some member of F . See,
for instance, the exercises which follow Proposition ?? and Theorem ??. (Exercise:
prove the previous theorem under the weaker hypothesis {i ∈ I | dimFi Vi = k} ∈ F .)
Clearly a group which is linear in dimension k has local systems of subgroups

with each subgroup linear in dimension k. Take, for instance, the system of all
finitely generated subgroups. As a consequence of Theorems ?? and ??, we now
have Mal’cev’s surprising converse.

( C.4 ) Theorem. (Mal’cev’s Representation Theorem.) Let G be a group
with a local system of subgroups each of which has a faithful representations in di-
mension k. Then G has a faithful representation in dimension k. 2

D. Refinements

While Mal’cev’s Representation Theorem ?? is striking and beautiful, much of its
power stems from our ability to extend and refine it. Here we offer certain modifi-
cations and additions of specific use to us. The proofs are left as Exercises.
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Let G be a group with local system {Gi | i ∈ I}; and, for each i ∈ I, let ϕi:Gi →
GLFi(Wi) be a map. In general, for a map ρ:A→ GL(X), the commutator [X,A]
is that subspace of X which is spanned by the images of all maps ρ(a)−1, as a runs
through A.
Give I a direct ordering which is compatible with the local system, and let F be

an ultrafilter generated by the directed set (I,≤). DefineW = FWi, a vector space
over the field F = F Fi. We identify G with its image in F Gi, as described in
Theorem ??. Thus, as seen above, the map ΦF = ( F ϕi)|G takes G into GLF (W ).
D.1. Controlling Subgroups

Let H ≤ G be a subgroup of G. If, for each i ∈ I, we set Hi = H ∩ Gi, then
{Hi | i ∈ I} is a local system for H.

( D.1 ) Theorem. Suppose that, for each i ∈ I, there is a subspace Ui with
[Wi, Hi] ≤ Ui ≤ Wi and dimFi Ui = k. Then [W,H] ≤ U = F Ui, an F -subspace
of W having dimension k.

The case G = H andWi = Ui gives Mal’cev’s Theorem again. If insteadH = �gX,
then we learn that any g of bounded local degree acts as a finitary linear transfor-
mation from FGLF (W ), even when W itself has infinite dimension.

D.2. Invariant Forms

Many of the classical groups are isometry groups of certain forms. The ultraproduct
of isometry groups becomes an isometry group in its action on the ultraproduct.

( D.2 ) Proposition. If, on each Wi, there is a quadratic or sesquilinear form
of some specific type which is left invariant by ϕi(Gi), then on W there is a ϕ(G)-
invariant form of the same type.

So, for instance, if each ϕi has its image in SpFi(Wi, fi), then the form fF = F fi
is a symplectic form from W ×W to F and is ϕ(G)-invariant. Furthermore, f is
nondegenerate if the individual fi are.

D.3. Projective Representations

In our applications we need a representation theorem which starts with projective
representations ϕi, that is, homomorphisms into projective groups PGLFi(Vi), since
the natural representations of the classical simple groups are projective representa-
tions. We define projective representation in a different but equivalent form. The
map ϕ:G→ GLF (V ) with associated cocycle c:G×G→ F is a projective represen-
tation provided, for all g, h ∈ G,

ϕ(g)ϕ(h) = c(g, h)ϕ(gh) .

Thus a projective representation whose cocycle is identically 1 is a representation in
the usual sense, a “genuine” representation. As a consequence of this definition, the
cocycle c is characterized by the property:

c(g, h)c(gh, k) = c(g, hk)c(h, k), for all g, h, k ∈ G .
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(Exercise: verify this.) The kernel of the projective representation ϕ is given by

ker(ϕ) = {g ∈ G |ϕ(g) is scalar on V } .

The more general theory of projective representations can be developed in terms
of modules with action “twisted” by the cocycle c. (Beware: this is not the study
of what are usually called projective modules.) If we had done that earlier, then
we would have found in place of Theorem ?? the result that an ultraproduct of
projective representations is a projective representation whose associated cocycle
is the ultraproduct of the coordinate cocycles. We then find a projective version
of Theorem ?? which can be further refined by the results of the previous two
subsections.

( D.3 ) Theorem. For each i ∈ I, let (ϕi, ci):Gi → GLFi(Vi) be a projective
representation. Then (ΦF , cF):G → GLF (V ) is a projective representation, where
cF = F ci, F = F Fi, V = F Vi, and ΦF = ( F ϕi)|G. The element g ∈ G is
in ker(ΦF) if and only if {i ∈ I | g ∈ ker(ϕi)} ∈ F .
(1) If, for each i ∈ I, the dimension dimFiWi is at most k, then dimF W is at

most k.
(2) If, for some g ∈ G and each i ∈ I, the dimension dimFi [Wi,ϕi(�gX ∩Gi)] is

at most k, then dimF [W,ΦF(g)] is at most k.
(3) If each Wi has a ϕi(Gi)-invariant nondegenerate form of type Cl, then on W

there is a ΦF(G)-invariant nondegenerate form of type Cl.

Since the ultrafilter F is generated by the compatible directed set (I,≤), the
statement of (2) can be simplified to: if, for some g ∈ G and each i with g ∈ Gi, the
dimension dimFi [Wi,ϕi(g)] is at most k, then dimF [W,ΦF(g)] is at most k.


