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Abstract

In his paper [6], S. Doro constructed a partial relationship between Mo-
ufang loops and groups with triality. We extend this relationship by showing
that the following concepts are equivalent: Groups with triality and trivial
centre, Moufang 3-nets, Latin square designs in which every point is the cen-
tre of an automorphism, isotopy classes of Moufang loops. Using this new
approach, we also give a simple proof to a theorem of Doro.

AMS classification subject: 20N05.

1 Introduction

Let L be a set with binary operation (x, y) )→ x · y(= xy). We say that (L, ·) is a
loop, if a unit element 1 ∈ L with 1 · x = x = x · 1 exists and the equations

a · x = b and y · c = d

have unique solutions in x and y. We denote the solutions by x = a\b and y = d/c.
For a loop L, the left and right translation maps

λx(y) = xy, ρx(y) = yx

are also defined.
To any loop (L, ·), one can associate a point-line incidence structure called 3-net.

k-nets are incidence structures with point set P and line set L = L1∪̇ · · · ∪̇Lk such
that the line classes behave as parallel classes do: lines from different classes have
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precisely one point in common, lines from the same class are disjoint and any point
is incident with precisely one element of any line class (see [16]).
Let (L, ·) be a given loop. One defines the associated 3-net with point set P =

L× L and line classes as set of subsets of P.
L1 = {{(x, c) : x ∈ L} : c ∈ L},
L2 = {{(c, y) : y ∈ L} : c ∈ L},
L3 = {{(x, y) : x, y ∈ L, xy = c} : c ∈ L}.

The elements of these classes are also called horizontal, vertical and transversal lines,
respectively. It is well known that any 3-net can be coordinatized by a loop, and in
general, isomorphic loops determine isomorphic 3-nets and isomorphic 3-nets give
isotopic coordinate loops.

2 Basic concepts

In this paper, we deal with the class of Moufang loops, those loops having a weak
form of associativity. Namely, they are defined by the identity

x · (y · xz) = (xy · x) · z. (1)

One can show that, in a Moufang loop, the left and right inverses, x\1 and 1/x, of
the element x coincide. Moreover, denoting this inverse by x−1, one has

(xy)−1 = y−1x−1,

that is, the inverse map J : x )→ x−1 is an anti-automorphism. This also implies
that for Moufang loops, the identities can be dualized. (Cf. [16], [1].)
In most cases a loop equation can be expressed in the associated 3-net by a

closure configuration and a closure configuration corresponds to a collineation of
the 3-net. Let us fix a vertical line f : x = m. We define the Bol reflection σm
with axis f as in Figure 1, as a permutation of the point set where points of f are
left fixed. Similarly, we define Bol reflections with horizontal or transversal axis. In
general, a Bol reflection is not a collineation. By [1, p. 120], we have the following

Proposition 2.1 (G. Bol) A 3-net is coordinatized by a Moufang loop if and only
if any Bol reflection is a collineation.

It is rather difficult to determine the first appearance of Bol reflections in the lit-
erature. They appear as automorphismes intérieurs of 3-nets in Tits’s paper [17]
and are also, as we shall see, implicit in papers of G. Glauberman [9], S. Doro
[6], and possibly other authors. Using the modern terminology of loop theory, Bol
reflections were investigated more recently by M. Funk and P.T. Nagy in [7].
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Figure 1: Bol reflection with vertical axis

Clearly, a Bol reflection leaves the points of its axis fixed and interchanges the
two other directions. Conversely, a collineation of a 3-net that leaves the points of
a line f fixed and interchanges the directions different from that of f must be a Bol
reflection with axis f. This also implies that the set of Bol reflections is closed under
conjugation in the whole collineation group of the 3-net.

For a given point-line incidence structure, it is very natural to consider its dual,
i.e., to reformulate the axioms by interchanging the role of points and lines. At the
end of this introductory section, we consider dual 3-nets.

Definition 2.2 A Latin square design D is a pair D = (P,A) of points P and lines
A (subsets of P ) with the properties:

(i) P is the disjoint union of three parts R, C, E.

(ii) every line f ∈ A contains exactly three points, meeting each of R, C, E exactly
once.

(iii) any pair of points from different parts belong to exactly one line.

A Latin square design is a transversal design in which each block has size 3. In
general (see [12, Chap. 22]) a transversal design with blocks of size k is dual to a k-
net and equivalent to a set of k− 2 pairwise orthogonal Latin squares. In particular
a Latin square design is equivalent to a Latin square, where we view R as indexing
rows, C as indexing columns, and E as indexing entries, so that the entry in row x
and column y is z if and only if the line �x, y, zX belongs to the line set A. (We think
of �x, y, zX as an ordered triple with x ∈ R, y ∈ C, z ∈ E.) Switching the roles of
R, C, and E gives new Latin squares (referred to as being conjugate to the original
one). The standard reference on Latin squares is [4].
We are mainly interested in automorphisms of the Latin square design D. For

x ∈ P , say x ∈ R, consider the partial permutation τx that exchanges the sets C
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and E via
τx(y) = z, τx(z) = y

if and only if �x, y, zX ∈ A. The question is whether τx can be extended to a
permutation on all P (by defining it on R) so that τx is in the automorphism group
Aut(D).
If τx has two extensions α and β to Aut(D), then αβ and αβ−1 are trivial on

C ∪ E and so on P . That is, α = β−1 = β. Therefore, τx has at most one such
extension, and if it exists then it has order 2. Thus we may, without confusion, call
this extension τx as well. It is a central automorphism of L with center x.
Completely similar remarks are valid for central automorphisms τy and τz with

centers y ∈ C and z ∈ E.

Proposition 2.3 For an arbitrary Latin square design D,

{τp | p ∈ P, τp ∈ Aut(D)}

is a normal set of elements of order 2 in Aut(D). If p and q belong to different parts
of P and τp, τq ∈ Aut(D), then τpτq has order 3.

Proof. Clearly, for any central automorphism τp and α ∈ Aut(D), we have ατpα−1 =
τα(p), hence the first statement follows. Let us assume p ∈ R, q ∈ C with r ∈ E
being the third point on the line through p, q. Then, τp, τq ∈ Aut(D) implies τr =
τpτqτp = τqτpτq, hence

(τpτq)
3 = (τpτqτp)(τqτpτq) = τ 2r = 1 .

As a consequence, ifD has central automorphisms with centers from two different
parts of P , then in fact the set of central automorphisms is a single conjugacy class
of Aut(D).
Of particular interest is the case where τp ∈ Aut(D), for every point p of P .

Proposition 2.4 If every point p is the center of a central automorphism of D,
then D is a dual Moufang 3-net.

Proof. By duality, central automorphisms of Latin square designs correspond pre-
cisely to Bol reflections of 3-nets. The statement follows from Proposition 2.1.
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3 Moufang 3-nets and groups with triality

Let G be a group. We use the usual notations for group elements x, y ∈ G: xy =
y−1xy and [x, y] = x−1y−1xy = x−1xy. Let α be an automorphism of G, then α(x)
will be denoted by xα as well, and [x,α] = x−1xα. The element αy ∈ Aut(G) maps
x to xy

−1αy.
We have the following definition due to Doro [6].

Definition 3.1 The pair (G,S) is called a group with triality, if G is a group,
S ≤ Aut(G), S = �σ, ρ;σ2 = ρ3 = (σρ)2 = 1X ∼= S3, and for all g ∈ G the triality
identity

[g,σ] [g, σ]ρ [g,σ]ρ
2

= 1

holds.

The principle of triality had been introduced by Cartan [3] in 1938 as a property
of orthogonal groups in dimension 8, and these examples motivated Tits [17]. Doro
was the first to define the concept of an abstract group with triality, away from any
context of a given geometric or algebraic object.
In the following, (G,S) stands for a group G with automorphism group S iso-

morphic to S3. Let σ and ρ be the given elements of S, and let the three involutions
of S be σ1 = σ, σ2 = σρ and σ3 = ρσ = σρ2. Finally, we need a notation for the
conjugacy class

Ci = σGi .

The following lemma gives a more conceptual reformulation of Doro’s triality.
(It is similar to Lemma 3.2 of [11], attributed by Liebeck to Richard Parker.)

Lemma 3.2 The pair (G,S) is a group with triality if and only if for all τi ∈ Ci,
(i, j ∈ {1, 2, 3}, i W= j), (τiτj)3 = 1. In this case, (G, �τi, τjX) is a group with triality,
as well.

Proof. The condition of the first statement claims something about the conjugacy
classes Ci, which do not change if we replace S by �τi, τjX. This means that the first
statement implies the second one.
For the first statement, it suffices to investigate the case i = 1, j = 3, τ1 = σg

and τ3 = σρ2, with arbitrary g ∈ G. Then,
1 = (σg(σρ2))3 ⇐⇒ 1=σg(σρ2) · σg(σρ2) · σg(σρ2)

⇐⇒ 1= [g, σ]ρ2 · [g,σ]ρ2 · [g,σ]ρ2
⇐⇒ 1= [g, σ] · ρ−1[g,σ]ρ · ρ[g, σ]ρ2

= [g, σ] [g,σ]ρ [g,σ]ρ
2
,

for all g ∈ G, as required.
The next lemma already fore-shadows the relation between Moufang 3-nets and

groups with triality.
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Lemma 3.3 Let P be a point of the Moufang 3-net N and denote by f1, f2 and f3
the three lines through P with corresponding Bol reflections σ1, σ2, σ3. Then the
collineation group S = �σ1, σ2, σ3X ∼= S3 acts faithfully on the set {f1, f2, f3}. This
action is equivalent to the induced action of S on the parallel classes of N .
Proof. As we already said, the conjugate of a Bol reflection is a Bol reflection again
with the corresponding axis. Thus, we have σ1σ2σ1 = σ3 = σ2σ1σ2, which proves
the first statement. The rest is trivial.

Using these lemmas, we can prove two key propositions.

Proposition 3.4 Let N be a Moufang 3-net and M be the group of collineations
generated by all the Bol reflection. Let M0 ≤M be direction preserving subgroup of
M . Let us fix an arbitrary point P of N and denote by S the group generated by the
Bol reflections with axes through P . Then M0 YM , M =M0S, and the pair (M0, S)
is a group with triality.

Proof. M0 YM = M0S is obvious. Thus S is a group of automorphism of M0 by
conjugation. By Lemma 3.2, it is sufficient to show �σg1 ,σh2 X ∼= S3 for all g, h ∈ M0,
where σ1 and σ2 are the reflections on two different lines through P . Since g, h
preserve the directions, the axes of σg1 and σh2 intersect in a point P

I, hence by
Lemma 3.3, �σg1 , σh2 X ∼= S3.
The converse of the proposition is true as well.

Proposition 3.5 Let (G,S) be a group with triality. The following construction
determines a Moufang 3-net N (G,S). Let the three line classes be the conjugacy
classes C1, C2 and C3. By definition, three mutually non-parallel lines τi ∈ Ci (i =
1, 2, 3) intersect in a common point if and only if

�τ1, τ2, τ3X ∼= S3.

Moreover, if G1 = [G,S]S = �C1, C2, C3X, then the group M(N ) generated by the Bol
reflections of N is

M(N ) ∼= G1/Z(G1).
Remark. From the point of view of dual 3-nets, that is, Latin square designs, we
have the point set being the union of the three classes Ci with lines consisting of the
intersection of an S3 subgroup with each of the three classes.
Proof. By the definition, parallel lines do not intersect. When formulating the
triality identity as in Lemma 3.2, we see that two non-parallel lines have a point in
common such that there is precisely one line from the third parallel class incident
with this point. This shows that N (G,S) is a 3-net indeed.
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The Moufang property follows from the construction immediately, since one can
naturally associate an involutorial collineation to any line. This involution inter-
changes the two other parallel classes and fixes the points on its line, that is, it
normalizes the S3 subgroups containing itself.
Finally, since a Bol reflection acts on the line set in the same way that the asso-

ciated Ci-element acts on the set ∪Cj by the conjugation, we have the isomorphism
M(N ) ∼= G1/Z(G1).

Theorem 3.6 The following concepts are equivalent:

(i) Groups (G,S) with triality and Z(GS) = {1}.
(ii) Latin square designs in which τp extends to a central automorphism for every

point p.

(iii) Moufang 3-nets.

(iv) Isotopy classes of Moufang loops.

Proof. (iii)⇒ (i)⇒ (ii)⇒ (iii) follows from Propositions 3.4, 3.5 and 2.4, (iii)⇔
(iv) is well known.

The relation between Moufang loops and groups with triality was first shown by
Doro in [6]. Doro’s construction has the disadvantage of being quite complicated,
particularly if the nucleus of the loop is not trivial. In our procedure the geomet-
ric approach is simple and intuitive, and the nucleus need not be singled out for
examination.
We give one example of an interesting result of Doro’s [6, Corollary 1.4] for which

the geometric reasoning is simpler.

Proposition 3.7 Let (G,S) be a finite group with triality and suppose that ρ ∈
InnAut(G). Then all elements [g,σ] have order 3 and [G,S] is a 3-group. Moreover,
the coordinate loop of the 3-net N (G,S) is centrally nilpotent.

Proof. Put H = GS. If ρ ∈ InnAut(G), then there exists elements r ∈ G and
c ∈ CH(G) such that ρ = rc. This implies

ρ = [ρ, σ] = [r, σ]cI,

with cI ∈ CH(G), since CH(G) YH. This means that
ρ[σ, r] = ρ−1σρ · r−1σr ∈ CH(G).

Put τ1 = σr and τ2 = σ2 = σρ. By Lemma 3.2, S̄ = �τ1, τ2X ∼= S3 and (G, S̄) is a
group with triality. The conjugacy classes Ci do not change. However, an important
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change is the fact that ρ̄ = τ1τ2 centralizes G and the triality identity becomes
[g, τ1]

3 = 1. This is equivalent with the identity [g,σ]3 = 1.
Therefore, by Lemma 3.2, if τ1, τ2 ∈ σH , then (τ1τ2)

3 = 1. By Glauberman’s
Z∗-theorem [8, p. 71] (indeed, in this special and elementary case by [10]) the group
�σHX has a normal 3-subgroup of index 2. Its subgroup [G,S] is then a 3-group as
well. Therefore, the order of the 3-net N (G,S) and so the order of the coordinate
loop are powers of 3. In particular the loop is a finite Moufang 3-loop, and so by [9,
Theorem 4] is centrally nilpotent.

4 On the classification of finite simple Moufang

loops

The classification of finite simple Moufang loops is based on the classification of
finite simple groups with triality. Using the results of the previous section, the
classification can be done in the following steps.

Proposition 4.1 Let ϕ : N1 → N2 be map between two 3-nets, which preserves
incidence and directions.

(i) Let us suppose that ϕ(P1) = P2 hold for the points P1, P2. Then, ϕ defines a
homomophism ϕ̄ : L1 → L2 in a natural way, where Li is the coordinate loop of
the 3-net Ni with origin Pi. Conversely, the loop homomorphism ϕ̄ : L1 → L2
uniquely defines a ϕ : N1 → N2 collineation.

(ii) Let us now suppose that the 3-nets Ni (i = 1, 2) are of Moufang type and ϕ
is a collineation onto. Let us denote by (Mi, S) the group with triality, which
corresponds to the 3-net Ni. Then, the maps σf )→ σϕ(f) induce a ϕ̃ :M1 →M2

surjective S-homomorphism, where σf is the Bol reflection belonging to the
line f of N1. Conversely, an S-homomorphism M1 → M2 defines a direction
preserving collineation between the 3-nets N (M1, S) and N (M1, S).

Proof. The first part of statement (i) follows from the geometric definition of the
loop operation in a coordinate loop; the second part is trivial. For the (ii) statement,
it is sufficient to see that a relation of the σf’s corresponds to a closure configuration
of the 3-net, and the ϕ-image of the configuration induces the relation on the σϕ(f)’s.
The converse follows from Proposition 3.5.

In the sense of the proposition above, we can speak of simple 3-nets, that is, of 3-
nets having only trivial homomorphisms. The next proposition follows immediately.

Proposition 4.2 If L is a simple Moufang loop, then the associated 3-net N is
simple as well. That is, the group (M0, S) with triality determined by N is a S-
simple.
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The next step is the following proposition of Doro.

Proposition 4.3 (Doro) Let L be a non-commutative finite simple Moufang loop.
If L is associative, then M0

∼= L× L× L and M ∼= L e S3. If L is non-associative,
then M0 is a finite simple group.

Proof. Cf. [6, Proposition 1].

The classification of the finite simple Moufang loops was achieved by Liebeck [11].
The main step of Liebeck’s classification is the following theorem ([11, Proposition
and Theorem 4.1]), the proof of which uses the vlassification of finite simple groups.
In the proof, Proposition 3.7 plays an important role, since it shows that the elements
of S are outer automorphisms.

Theorem 4.4 (Liebeck [11]) a) The only finite simple groups with triality are the
simple groups D4(q).
b) Let S = �σ1, σ2, σ3X ∼= S3 be a group of outer automorphisms of G = D4(q)

such that the pair (G,S) is a group with triality. Then S consists of graph automor-
phisms of D4(q).

From this result one obtains the classifictaion of finite simple Moufang loops imme-
diately if one uses Proposition 4.2 and 4.3.

The graph automorphisms of D4: g g··
T
T

g
g

σ1

σ2

σ3

Knowing the group M0 = D4(q) = PΩ+8 (q) and that S is the group of graph
automorphisms (the finite counterpart to Cartan’s triality [3]), we implicitly have
the Moufang 3-net and its finite simple coordinate loop. Following L.J. Paige [15],
this loop can be constructed explicitly, as well.
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