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Abstract

All finite Moufang loops have the Lagrange property.

1 Introduction

A finite loop L is said to have the Lagrange property if, for every subloop K of
L, the order of K, written |K|, is a divisor of |L|, the order of L. Lagrange’s
Theorem states that all finite groups have the Lagrange property. Here we
resolve, in the positive, the long-standing conjecture that, more generally, all
finite Moufang loops have the Lagrange property:

( 1.1) Theorem. Let K be a subloop of the finite Moufang loop L. Then |K|
divides |L|.

It is well-known that the Lagrange property is valid for all Moufang loops
if and only if it is valid for finite simple Moufang loops [4, Lemma V.2.1].
Of course, Lagrange’s Theorem holds if the simple loop is a group; so only
nonassociative, finite, simple Moufang loops need be considered. These were
classified by Liebeck [15], the only examples being the loops P (q) first studied
by Paige [19]. The Paige loop P (q) is the central quotient of the loop of norm 1
units in Oct(q), the split octonians over the finite field Fq. Liebeck’s proof used
Doro’s observation [7] that Moufang loops correspond to groups with triality.
The corresponding triality group for P (q) is PΩ+

8 (q):Sym(3).
In our proof we show that it is enough to check divisibility for K maximal

in L = P (q) and that these subloops correspond to maximal triality subgroups
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Theorem, group with triality
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of PΩ+
8 (q):Sym(3). All maximal subgroups of PΩ+

8 (q):Sym(3) have been cata-
logued by Kleidman [14], and we show that each corresponding subloop conforms
to the Lagrange property.

Earlier work on the Lagrange property for Moufang loops can be found in
[5, 16, 24].

This paper was first submitted for publication in June 2004. We quickly
learned that the paper [11] with the same result (and title!) had been writ-
ten by A.N. Grishkov and A.V. Zavarnitsine and submitted in late 2003. The
same authors have a second preprint [12] which finds the maximal subloops of
the finite Paige loops (from which the Lagrange property follows, as mentioned
above). More recently, we learned that Eric Moorhouse [17] has also indepen-
dently classified the maximal subloops of the finite Paige loops and thereby
verified the Lagrange property. The work of [11, 12, 17] depends, as does ours,
on Kleidman’s classification [14] of the maximal subgroups of PΩ+

8 (q):Sym(3).
The details of the several proofs are, however, different; and we have been en-
couraged by Doctors Grishkov and Zavarnitsine and by others to continue with
publication of our version.

The first author’s thesis [9], prepared without prior knowledge of [11, 12, 17],
improves upon the work of this paper and those in two ways. All finite subloops
of arbitrary (possibly infinite) Paige loops are described, the classification of
maximal subloops of the finite loops and the Lagrange property thus being
corollaries. Since the containing loop need not be finite, Kleidman’s results [14]
are not directly applicable. Furthermore Kleidman’s proof makes broad use of
the classification of finite simple groups, and it is desirable to minimize reliance
upon that major result. The results of [9] (which will appear elsewhere) are
almost entirely elementary in proof, with only a few specific results from the
classification used.

For general reference on loop theory, see [4, 20]. For group theory see [1],
and for geometry see [21]. If s is an element of GLK(V ), then, for the vector v
in V , the commutator [v, s] is defined to be v(s− 1) = −v + v.s. Similarly, for
a subspace U of V and a subset S of GLK(V ), the commutator subspace [U, S]
is the K-span of the various [u, s] with u ∈ U and s ∈ S.

2 Loops, designs, and triality

We introduce Moufang loops, Latin square designs, and groups with triality.
These are linked in Theorem 2.2 (from [13]), which is fundamental to this paper.
We also present some general results about groups with triality, especially those
coming from subloops of Moufang loops.

A loop is a set L equipped with a binary product that possesses an identity
element 1 and such that the equations ax = c and yb = c have unique solutions
x and y for all a, b, c ∈ L. Thus a loop can be thought of as a group that might
not be associative. A Moufang loop satisfies the weak associative law

((ab)a)c = a(b(ac)) ,
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for all a, b, c ∈ L. Such loops were first studied by Moufang [18] in the context
of alternative algebras. Clearly every group is a Moufang loop.

A Latin square design D is a pair D = (P,A) of points P = P(D) and lines
A = A(D) (subsets of P ) with the properties:

(i) P is the disjoint union of three parts R, C, E.

(ii) every line l ∈ A contains exactly three points, meeting each of
R, C, E exactly once.

(iii) any pair of points from different parts belong to exactly one
line.

We have |R| = |C| = |E| = n, say. The n2 lines of the Latin square design
with |P | = 3n correspond to the n2 cells of a Latin square with side n. The line
{aR, bC , cE} asserts that in row a, column b of the Latin square one finds the
entry c.

Let D = (P,A) be a Latin square design. Choose a line l0 ∈ A and a set
L that we use to label R (one-to-one) in such a way that the point l0 ∩ R is
labelled by the element 1 (or sometimes, for clarity, 1R). We also will label C
and E by L and, in doing so, define a multiplication on L with identity element
1. We call L the Thomsen loop of D, L = L(D). For a line l of A, we write
[ a, b, c ] in place of {aR, bC , cE}.

The loop and labeling are given as follows:

1. Label l0 as [ 1, 1, 1 ], and label the points of R \ 1R with L \ 1.

2. Label E with the set L−1 of right inverses of members of L via
[ a, 1, a−1 ] ∈ A.

3. Label C with the members of L via [ 1, a, a−1 ] ∈ A.

4. The right inverse map is determined by [ a, a−1, 1 ] = [ a, b, 1 ] ∈ A;
so E, previously only labelled by L−1, is now also labelled by L.

5. Define ab = c in L by [ a, b, c−1 ] ∈ A. (That is, [ d, e, f ] ∈ A if
and only if (de)f = 1 in L.)

Choice of a different identity line l0 and of a different identification of L with R
correspond to loop isotopy for L [4, 20].

Conversely, if L is a loop, then the Thomsen design of L, D = T(L), has
point set P(L) = LR∪LC ∪LE of size 3|L| and line set A(L) consisting of those
triples {aR, bC , cE} = [ a, b, c ] with (ab)c = 1 in L. (Thomsen [23] seems to have
been the first to associate discrete incidence systems with arbitrary loops. Most
of the earlier work on webs concentrated on Euclidean geometry.)

The two constructions are easily seen to be inverses of each other in the
sense that T(L(D)) is isomorphic to D and L(T(L)) is isotopic to L.

In Theorem 2.2 below, we will see that Moufang loops correspond to Latin
square designs admitting certain types of automorphisms. Here the automor-
phism group Aut(D) of the Latin square design D = (P,A) consists of all
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permutations g of the point set P that take lines to lines; that is, {a, b, c} ∈ A
if and only if {ag, bg, cg} ∈ A.

For x ∈ P , say x ∈ R, consider the partial permutation τx that exchanges
the sets C and E via

τx(y) = z, τx(z) = y if and only if [x, y, z ] ∈ A .

The question is whether τx can be extended to a permutation on all P (by
defining it on R) so that τx is in Aut(D).

If τx has two extensions α and β to Aut(D), then αβ and αβ−1 are trivial on
C ∪E and so on D. That is, α = β−1 = β. Therefore, τx has at most one such
extension, and if it exists then it has order 2. Thus we may, without confusion,
call this extension τx as well. It is a central automorphism of D with center x.

Completely similar remarks are valid for central automorphisms τy and τz

with centers y ∈ C and z ∈ E. If we want to emphasize the part of P from
which the center comes, then we may write τx = ρx, τy = κy, and τz = εz.

( 2.1) Proposition. ([13, Prop. 2.3]) For an arbitrary Latin square design
D = (P,A),

{τp | p ∈ P, τp ∈ Aut(D)}
is a normal set of elements of order 2 in Aut(D). For g, τp ∈ Aut(D), we have
τg
p = τpg.

If τp, τq ∈ Aut(D) with p and q belonging to different parts of P , then τpτq

has order 3. In this case {τp | p ∈ P, τp ∈ Aut(D)} is a single conjugacy class
of Aut(D).

The case where τp ∈ Aut(D), for every point p of P , will lead to Moufang loops.
The proposition suggests an abstract setting for such groups.

Let D = DG be a normal set of elements of order 2 in the group G = 〈D〉.
Then (G, D, π), or just G, is said to be a group with triality (or triality group)
with respect to the set D of triality reflections (or just reflections) and projection
π provided:

π is a homomorphism from G onto Sym(3), and |de| = 3 whenever
d, e ∈ D with π(d) 6= π(e).

That is, if d, e ∈ D with π(d) 6= π(e) then 〈d, e〉 ' Sym(3). In particular d and
e are conjugate in the group they generate, so the normal set D is actually a
single conjugacy class of G. It is often (but not always) the case that the class D
and projection map π are uniquely determined within the group G with triality.

The group ker(π) is called the rotation subgroup of (G, D, π).
Proposition 2.1 allows the construction of groups with triality from Latin

square designs that admit the central automorphism τp for each point p. In this
case we write D(D) = { τp | p ∈ P } and G(D) = 〈D(D)〉. By Proposition 2.1,
the group G(D) is a group with triality whose reflection class is D(D). The
projection map π:G(D) −→ Sym(ρ, κ, ε) is then given by

ρp 7→ (ρ)(κ, ε) , κp 7→ (κ)(ρ, ε) , εp 7→ (ε)(ρ, κ) ,
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for p ∈ P . If L is a loop with D = T(L), then we write G(L) for G(D) and
D(L) for D(D). Given a ∈ L, we also write ρa for τaR

, κa for τaC
, and εa for

τaE
.
Conversely, given a group (G, D, π) with triality, we can define a Latin square

design T((G, D, π)) with point set P = D. For each d, e ∈ D with π(d) 6= π(e),
we have 〈d, e〉 ' Sym(3); so we take the line of T((G, D, π)) on d, e to be
{d, e, ded = ede}. We thus also refer to the subgroup 〈d, e〉 ' Sym(3) as a line
of the group (G, D, π) with triality.

Usually we can write T(G) for T((G, D, π)) without ambiguity. If L is a loop
with T((G, D, π)) = T(L), then we also write L = L((G, D, π)) = L(G). This is
an abuse, since L is only determined up to isotopy by (G, D, π).

The fundamental connection between arbitrary Moufang loops and abstract
groups with triality was observed and studied by Doro [7], motivated by the
work of Glauberman [10]. Doro’s definition of triality is different but equivalent
to the one given here. In Doro’s treatment the rotation subgroup ker(π), rather
than the larger group G, is called a group with triality.

Bol [3] gave a geometric characterization of 3-nets or 3-webs (dual to Latin
square designs—see [4, I.4] or [20, II.1]) that are coordinatized by Moufang
loops. Tits [22] showed that Bol’s 3-nets admit reflections as automorphisms.
(See also Bruck [4, p.120].) Tits also noted and discussed the connection with
triality for orthogonal groups and the octonians. Our treatment follows that of
[13], which was in part motivated by the work of Funk and Nagy [8].

( 2.2) Theorem. ([13, Theorem 3.6]) The following are equivalent:
(1) L is a Moufang loop;
(2) D = (P,A) is a Latin square design admitting a central automorphism

at each point;
(3) (G, D, π) is a group with triality and Z(G) = 1.

Indeed:
given L as in (1), we have D = T(L), G = G(L), and D = D(L);
given D as in (2), we have L = L(D), G = G(D), and D = D(D);
given G as in (3), we have L = L(G) and D = T(G).

Under (1), the map π = πL is determined by projection onto 〈ρ1, κ1, ε1〉 '
Sym(3). That is, ρa 7→ ρ1, κa 7→ κ1, and εa 7→ ε1, for a ∈ L. Similarly, under
(2), a suitable map π = πD can be determined by projection onto any line.

In this correspondence, we have

3|L| = |P | = |D| .

These equalities are crucial for our study of the Lagrange property.

If (G, D, π) is a group with triality and Q is a normal subgroup of G that
is contained in ker(π), then G/Q is also a group with triality. Subgroups of G
also give rise to new groups with triality. We say that the subgroup H of G
admits the triality if (〈D ∩ H〉, D ∩ H,π|〈D∩H〉) is itself a group with triality.
The following is elementary:
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( 2.3) Lemma. Let (G, D, π) be a group with triality, and let H be a subgroup
of G. Then the following are equivalent:

(1) H admits the triality;
(2) H contains a line;
(3) G = ker(π).H and H ∩D is nonempty.

Certain properties of groups with triality, particularly those regarding cardinal-
ity, can be discussed in terms of quotients and subgroups.

( 2.4) Lemma. Let (G, D, π) be a group with triality. Set M = ker(π), the
rotation subgroup.

(1) Assume that the subgroup H of G admits the triality, and let M0 be the
rotation subgroup of H0 = 〈D ∩ H〉. The set D ∩ H = D ∩ H0 is a single
conjugacy class of H0. For r ∈ D ∩H, we have

|D ∩H| = 3|D ∩ rM0| and D ∩ rM0 = rM0 = rM∩H .

(2) Assume Q is a normal subgroup of G that is contained in M , and set
Ḡ = G/Q. Let I be a line of G with r ∈ D ∩ I. Then Q.I admits the triality
and (Ḡ, D̄, π̄) is a group with triality. Furthermore

|D| = |D̄| · |D ∩ rQ| = 3|r̄M̄ | · |rQ| .

Proof. (1) By definition and Lemma 2.3, H0 is a group with triality. As
already seen in Proposition 2.1 and the remarks that follow it, D∩H = D∩H0

is a single class of H0. These involutions are uniformly distributed among the
cosets corresponding to the involutions of π(H0) ' Sym(3), so |D ∩ H| =
|D ∩H0| = 3|D ∩ rM0|.

Clearly D ∩ rM0 ⊇ rM∩H ⊇ rM0 . In H0/M0 ' Sym(3), we find 〈r〉M0 =
NH0(rM0). Therefore

D ∩ rM0 = rH0 ∩ rM0 = r〈r〉M0 = rM0 ,

completing (1).
(2) This is immediate except for the last line. There |D̄| = 3|D̄∩r̄M̄ | = 3|r̄M̄ |

and D ∩ rQ = rQ, both by (1).

( 2.5) Proposition. Let D = (P,A) be a Latin square design. Consider the
group Univ(D) with generators d̃, one for each d ∈ P , and relations d̃2 = 1 and
d̃ẽd̃ = f̃ = ẽd̃ẽ, for all d ∈ P and [ d, e, f ] ∈ A. Then Univ(D) is a triality
group with reflection class D̃ = { d̃ | d ∈ P } whose projection map π̃ with image
Sym(ρ, κ, ε) is given by

r̃ 7→ (ρ)(κ, ε) , c̃ 7→ (κ)(ρ, ε) , ẽ 7→ (ε)(ρ, κ) ,

for all r ∈ R, c ∈ C, and e ∈ E.
Assume additionally that the Latin square design D = (P,A) admits a

central automorphism at each point. Then we have T(Univ(D)) ' D and
Univ(D)/Z(Univ(D)) ' G(D) with D̃ mapped bijectively to D(D). Indeed any
group with triality whose associated Latin square design is isomorphic to D is a
central quotient of Univ(D).
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Proof. By construction, for an arbitrary Latin square design D, D̃ is a
conjugacy class of elements of order 2 in G̃ = Univ(D) and π̃ is a homomorphism
onto Sym(ρ, κ, ε). Furthermore, if x, y ∈ D̃ with π̃(x) 6= π̃(y) then |xy| = 3; so
Univ(D) is a group with triality as described.

For most Latin square designs, Univ(D) will itself be symmetric of degree 3.
If, however, D admits a central automorphism at each point, then d̃ 7→ τd, for
all d ∈ P , is a bijection of D̃ and D(D); and it describes a homomorphism of
Univ(D) onto G(D) since all relations are determined by D. If Z is the kernel
of this homomorphism, then d̃ = D̃ ∩ d̃Z, for all d ∈ P . Therefore d̃Z = d̃, and
Z is central in Univ(D). As G(D) has trivial center, in fact Z = Z(Univ(D)).

Indeed, if (G, D, π) is a group with triality and T((G, D, π)) ' D, then the
argument of the previous paragraph remains valid except we no longer know
that G has trivial center. Still we find that G is isomorphic to Univ(D)/Z0 for
some Z0 ≤ Z(Univ(D)).

The group Univ(D) is called the universal triality group of D, and we also
write Univ(L) = Univ(D) for any Moufang loop L with D = T(L). The propo-
sition should be compared with Doro’s [7, Theorem 2], which provides a presen-
tation for the rotation group ker(π̃) of Univ(L).

Let L be a Moufang loop. If K is a subloop of L, then we set DL(K) =
{ ρa, κa, εa | a ∈ K } of size 3|K| and GL(K) = 〈DL(K)〉. Thus G(L) =
GL(L) and D(L) = DL(L). Always GL(K) contains the identity line I(L) =
〈ρ1, κ1, ε1〉 ' Sym(3) and so admits the triality.

( 2.6) Proposition. Let L be a Moufang loop. Set G = G(L), D = D(L),
and π = πL.

(1) Let K be a subloop of L. Then H = GL(K) is a triality subgroup of G
with reflection class DL(K) = D ∩H = D ∩ NG(H) and projection map equal
to the restriction π|H . We have |D ∩H| = 3|K|, and H is a central quotient of
Univ(K) as group with triality.

(2) If I(L) ≤ N ≤ G, then there is a subloop K of L with DL(K) = D ∩N
and GL(K) = 〈D ∩N〉.

(3) If K is a maximal subloop of L, then NG(GL(K)) is a maximal subgroup
of G with G = ker(π).NG(GL(K)).

Proof. (1) As GL(K) contains I(L), it admits the triality by Lemma 2.3.
By Proposition 2.5, GL(K) is a central quotient of Univ(K) and |D ∩ H| =
|DL(K)| = 3|K|. By Lemma 2.4.1 applied to NG(H), the set D ∩NG(H) is a
single conjugacy class of NG(H) and so must be the class D ∩H.

(2) Let M = ker(π). We know that ρ1 acts on C = D∩κ1M and E = D∩ε1M
via

aC .ρ1 = (a−1)E and aE .ρ1 = (a−1)C ,

for all a ∈ L. To describe its action on R = D∩ ρ1M , consider l = [ a, a−1, 1 ] =
{aR, (a−1)C , 1E}, a line of A(L). Thus

l.ρ1 = {aR.ρ1, (a−1)C .ρ1, 1E .ρ1} = {aR.ρ1, aE , 1C} = [ a.ρ1, 1, a ]
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is also in A(L). The unique line of shape [ ∗, 1, a ] is [ a−1, 1, a ], so we conclude
that aR.ρ1 = (a−1)R. Similar statements hold for κ1 and ε1, giving

aR.ρ1 = (a−1)R , aC .κ1 = (a−1)C , aE .ε1 = (a−1)E ,

for all a ∈ L. This in turn allows us to calculate the action of t = κ1ρ1 on D,
and we find t = (R,C, E) ; that is,

aR.t = aC , aC .t = aE , aE .t = aR ,

for all a ∈ L.
Let K = { a ∈ L | ρa ∈ N }. As t ∈ I(L) ≤ N , we have also K = { a ∈

L |κa ∈ N } = { a ∈ L | εa ∈ N }. As ρ1 ∈ I(L) ≤ N , the subset K of L contains
1 and is closed under inverses. If a, b ∈ K then ρa, κb ∈ N and ρaκbρa = εc ∈ N ,
thus c = (ab)−1 ∈ K and ab ∈ K. Therefore K is a subloop of L; so we have
verified D ∩N = DL(K) and 〈D ∩N〉 = GL(K), as claimed.

(3) As N = NG(GL(K)) = NG(DL(K)) (by (1)) contains the line I(L), we
have G = ker(π).N . Suppose N is not maximal in G, and choose n ∈ G\N with
N∗ = 〈n, N〉 proper in G. As n /∈ N , we have (D∩N)n 6= D∩N = DL(K). Thus
D ⊃ D∩N∗ ⊃ D∩N . By (2), there is a subloop K∗ of L with D(K∗) = D∩N∗

and L > K∗ > K. Therefore K is not maximal in L.

3 Paige loops and their groups

The fundamental group theoretic result in the classification of finite, nonasso-
ciative, simple Moufang loops was the following:

( 3.1) Theorem. (Doro [7], Liebeck [15]) Let (G, D, π) be a finite group
with triality, and let I be a line of G. Let M be a semisimple, I-invariant
subgroup of G, and let E be a nonabelian simple direct factor of M . Then we
have one of:

(1) [E, I] = 1;
(2) 〈E, I〉 ' E3:I, a wreathed product;
(3) 〈E, I〉 = E:I ' PΩ+

8 (q):Sym(3), for some q, and I is uniquely deter-
mined within E:I up to conjugacy.

Proof. The transitive I-space Ω = {EI} has size dividing 6. As 〈Ω〉.I
admits the triality, |Ω| is not 2 or 6 by [7, Prop. 1]. In the same place, Doro
showed that |Ω| = 3 gives the wreathed case (2).

If |Ω| = 1, then either [I, E] = 1 or I induces outer automorphisms on E by
[7, Cor. 4, p.382]. In the latter case, Liebeck [15] showed we must have (3).

Doro [7] also showed that, under Theorem 3.1.2, the loop L(〈E, I〉) is iso-
morphic to the group E. Therefore our verification of the Lagrange property
involves a careful study of the group and associated loop occuring under Theo-
rem 3.1.3.
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Over the finite field Fq a nondegenerate 8-dimensional composition algebra
is uniquely determined up to isomorphism as the Fq-algebra of split octonians
Oct(q) ([19, §2]). These can be conveniently written as Zorn’s vector matrices

m =
[

a ~b
~c d

]
with a, d ∈ Fq and ~b,~c ∈ F3

q. Multiplication is given by[
a ~b
~c d

] [
x ~y
~z w

]
=

[
ax +~b · ~z a~y + w~b− ~c× ~z

x~c + d~z +~b× ~y ~c · ~y + dw

]
using the standard dot and cross products of 3-vectors. The associated quadratic
form, which admits composition, is the norm (or determinant) ∆(m) = ad−~b ·~c.
(See [15] for a different rendering of Oct(q).)

In Oct(q) an element m is invertible if and only if ∆(m) 6= 0, and the
loop of units GLL(q) is a Moufang loop. This possesses a normal subloop
SLL(q) consisting of all units with norm 1. The scalars of SLL(q) form a
normal subloop {±I} of order d = gcd(q − 1, 2), and the Paige loop is the
quotient P (q) = PSLL(q) = SLL(q)/{±I}. (See [19] for all of this.) The Zorn
construction of the split octonian algebra Oct(F ) and its Moufang loop of units
GLL(F ) can be made over arbitrary fields F . Also of interest is the quotient of
the full unit loop by scalars: PGLL(F ) = GLL(F )/{αI |α ∈ F }. The Paige
loop P (q) has index d in PGLL(q) as the squares of F∗q have index d in F∗q .

( 3.2) Theorem. (Paige [19]) The loop P (q) is a simple, nonassociative,
Moufang loop. We have |P (q)| = q3(q4 − 1)/d, where d = gcd(q − 1, 2).

( 3.3) Lemma. For prime power q, set d = gcd(q−1, 2) and `(q) = q3(q4−1)/d.
(1) If q0 divides q, then `(q0) divides `(q).
(2) If odd q2

0 = q, then 2`(q0) divides `(q).
(3) `(2) = 120 divides `(q), for all q.

Proof. This is elementary.

We have G(P (q)) = PΩ+
8 (q):Sym(3) as in Theorem 3.1.3. This is well-

known [7, 15] and a consequence of Theorems 3.1 and 3.2. An elementary
proof, using only the Cartan-Dieudonné Theorem [21, Theorem 11.39], that
G(P (F )) = PΩ+

8 (F ):Sym(3), for all fields F , can easily be extracted from [2,
Theorem 1]. Also evident from [2] is that a triality reflection of PΩ+

8 (F ):Sym(3)
induces a reflection on PO+

8 (F ) (discussed further below) and that ker(π) is the
corresponding rotation subgroup PΩ+

8 (F ) (hence the terminology). The normal
subgroup of Aut(PΩ+

8 (q)) generated by this reflection class is PΩ+
8 (q):Sym(3)

when q is even but is PΩ+
8 (q):Sym(4) when q is odd. For odd q, within

Aut(PΩ+
8 (q)) there are four triality subgroups PΩ+

8 (q):Sym(3), permuted faith-
fully by PΩ+

8 (q):Sym(4)/PΩ+
8 (q) ' Sym(4). See also [14, §1.4]. (More gener-

ally [2], the normal subgroup G∗ of Aut(PΩ+
8 (F )) generated by the reflection
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class has G∗/PΩ+
8 (F ) ' Q2:Sym(3), where Q is the multiplicative group of

the field F modulo its squares. Indeed G∗ = G(PGLL(F )), the triality group
associated with the octonian loop of units modulo scalars.)

The related group O+
8 (q) acts as the full isometry group of the 8-dimensional

orthogonal space (V,∆), where V = F8
q is the vector space carrying Oct(q).

This orthogonal space has +-type; that is, it is the perpendicular direct sum of
nondegenerate 2-spaces, each of which contains singular vectors. A vector v is
singular if ∆(v) = 0, in which case the subspace spanned by v is also singular.
A nonsingular 1-space is of +-type if all its ∆ values are squares and otherwise
is of −-type. (Thus a 1-space is of +-type if and only if it contains a vector v
with ∆(v) = 1.) A nondegenerate subspace is of −-type if it is not of +-type,
and a subspace is totally singular if all its vectors are singular.

The intersection of PO+
8 (q) with PΩ+

8 (q):Sym(3) is PΩ+
8 (q)〈r〉 where r rep-

resents a +-reflection r̂ of O+
8 (q). In saying that r̂ is a +-reflection we mean

that, for its action on V , the center [V, r̂] = V (r̂ − 1) is a nonsingular 1-space
of +-type (so in characteristic 2, the +-reflections are actually transvections).

Recall that a subspace W of V is invariant under the +-reflection s if and
only if either W contains the center [V, s] or W is perpendicular to the center:
W ≤ [V, s]⊥ = CV (s).

In odd characteristic Aut(PΩ+
8 (q)) does not act on Ω+

8 (q) but instead on
its double cover Spin+

8 (q). Nevertheless, we occasionally abuse terminology
by discussing the action of elements and subgroups H of PΩ+

8 (q):Sym(3) on
the underlying vector space V , for instance, blurring the distinction between
a +-reflection r̂ of O+

8 (q) and the element r of PO+
8 (q) representing it. For

H ≤ PO+
8 (q) we should more properly lift H to a subgroup Ĥ ≤ O+

8 (q), so that
H ' Ĥ/Ẑ with Ẑ = Z(O+

8 (q)) of order gcd(q − 1, 2). Further care is required
when H is not conjugate into PO+

8 (q) (that is, when 3 divides |π(H)|). In that
case, we must confine our discussion to the way H acts on the set of subspaces
of the associated D4 geometry—the set S1 of totally singular 1-spaces, the set
S2 of totally singular 2-spaces, and the two classes S4

1 and S4
2 of totally singular

4-spaces of V . (Two totally singular 4-spaces W1 and W2 belong to the same
class if and only if W1 ∩ W2 has even dimension.) The group PΩ+

8 (q):Sym(3)
leaves S2 invariant and permutes the members of S1∪S4

1 ∪S4
2 , inducing Sym(3)

on {S1, S4
1 , S4

2}. See [2, §§2-3].

We make extensive use of Kleidman’s work [14] on maximal subgroups of
groups G for PΩ+

8 (q) ≤ G ≤ Aut(PΩ+
8 (q)). In particular, we use his notation

for such maximal subgroups.

( 3.4) Theorem. Let N be a maximal subgroup of G = PΩ+
8 (q):Sym(3) with

G = PΩ+
8 (q).N . Then N0 = N ∩ PΩ+

8 (q) has one of the types:

G2,K3, Sa, S2,K5, N1, N2, N3, N4, P2, Rs2, I+2, I−2, I+4 .

Conversely, for each of these types, there is a unique PΩ+
8 (q)-conjugacy class

of subgroups N0 with G = NG(N0)PΩ+
8 (q).

10



Proof. By Kleidman’s results [14, Prop. 4.2.1, Table III], all such N0 must
have one of these types or K4 or K6. But subgroups N0 of those two types have
PΩ+

8 (q)NG(N0) proper in G; see [14, 2.3.4,2.3.9].
Uniqueness follows immediately from [14, Table I], except when q is odd

and N0 has type K3, S2, K5, or N4. In the exceptional cases PΩ+
8 (q) has four

conjugacy classes of subgroups N0, and these are permuted by Aut(PΩ+
8 (q))

and PΩ+
8 (q):Sym(4) with induced action Sym(4). Therefore exactly one of the

classes satisfies G = PΩ+
8 (q)NG(N0).

In Table K below, we have extracted what is most important for us from
Kleidman’s Tables I [14, pp.186–191] and III [14, p.238]. Table K lists the
conjugacy classes of subgroups N0 of PΩ+

8 (q) for which N = NG(N0) is maximal
in G = PΩ+

8 (q):Sym(3) and has PΩ+
8 (q).N = G. We call such an N a maximal

complementing subgroup of PΩ+
8 (q):Sym(3). A complementing N might not

contain reflections and so not admit the triality. (In fact only in the cases K3

and N3 does complementing N fail to admit the triality [9].)
The first column of the table lists Kleidman’s names for the cases. (We have

surpressed Kleidman’s additional superscripts, since he must consider more than
one class while we only have one.) The second column gives the isomorphism
type of N0. Here the symbol ↓ indicates that the subgroup described is actually
the preimage in Ω+

8 (q), so a central subgroup of order d = gcd(q− 1, 2) must be
factored out. The third column provides restrictions on the field Fq and char-
acteristic p without which the corresponding N is not maximal. The notation
1
dA indicates a subgroup of index d in A. The group Aa is the direct product
of a copies of A; especially pa is elementary abelian of that order. A group [qa]
has order qa but undescribed isomorphism type.

Table K. Maximal complementing subgroups of PΩ+
8 (q):Sym(3)

Name Isomorphism type of N0 Restrictions

G2 G2(q) −
K3 PGLε

3(q) ε = ±, 2 < q ≡ ε1 (mod 3)
Sa PΩ+

8 (q0) q = qa
0 , a prime

S2 PΩ+
8 (q0).22 q = q2

0 , odd
K5 PΩ+

8 (2) q = p ≥ 3
N1 ↓

(
1
dZq+1 × 1

dGU3(q)
)
.2d −

N2 ↓
(

1
dZq−1 × 1

dGL3(q)
)
.2d q ≥ 4

N3

(
D(2/d)(q2+1) ×D(2/d)(q2+1)

)
.22 q 6= 3

N4 [29]:GL3(2) q = p ≥ 3
P2 ↓ [q11]

(
1
dZq−1

)2: 1dGL2(q).d2 −
Rs2 ↓ [q9]:

(
1
dGL2(q)× Ω+

4 (q)
)
.d −

I+2 ↓
(

1
dZq−1

)4
.d3.23.Sym(4) q ≥ 7

I−2 ↓
(

1
dZq+1

)4
.d3.23.Sym(4) q 6= 3

I+4

(
Ω+

4 (q) ◦ Ω+
4 (q)

)
.2.2d q ≥ 3

11



4 Maximal triality subgroups of PΩ+
8 (q):Sym(3)

( 4.1) Theorem. Let G = PΩ+
8 (q):Sym(3) with D its class of triality reflec-

tions. If N is a maximal subgroup of G with G = PΩ+
8 (q).〈D∩N〉, then |D∩N |

divides |D|.

Given this theorem, we have

Proof of Theorem 1.1:
Let L be a finite Moufang loop and K a subloop. The proof is by induction

on |L|, the result being clear for |L| = 1.
By [4, Lemma V.2.1] and induction, L is simple. (Lemma 2.4.2 could also

be used in place of the reference.) As Lagrange’s Theorem holds in groups, we
may assume that L is nonassociative. Therefore by Liebeck’s theorem [15], L is
P (q) for some prime power q.

The result is evident if L = K, so we may assume that K is proper in L and
let K1 be a maximal subloop of L containing K. By induction |K| divides |K1|,
so we are reduced to the case in which K1 = K is a maximal subloop of L.

Let N be the normalizer of GL(K) in G = G(L) = PΩ+
8 (q):Sym(3). By

Proposition 2.6.3, N is a maximal subgroup of G with G = PΩ+
8 (q).N . By

Proposition 2.6.1 and Theorem 4.1, 3|K| = |D∩N | divides |D| = 3|L|. Therefore
|K| divides |L|, as desired.

It remains to prove Theorem 4.1. Let G = PΩ+
8 (q):Sym(3) with D its class

of triality reflections. By Theorem 3.1.3, the class D is uniquely determined as
is the line class IG. The projection π is also unique, given by π:G −→ G/G′′ '
Sym(3). We let M be the rotation subgroup ker(π) = G′′ = PΩ+

8 (q). Fix a
line I, and let O3(I) = 〈t〉 and r = D ∩ I ∩ PO+

8 (q). Set d = gcd(q − 1, 2). By
Proposition 2.6 and Theorem 3.2 we have |D| = 3|P (q)| = 3`(q) = 3q3(q4−1)/d.

Let N be maximal in G as in Theorem 4.1. Therefore N is a maximal
complementing subgroup in G, and the group N0 = N ∩M has one of the types
on Kleidman’s list as given in Theorem 3.4 and Table K. We treat the various
cases in a sequence of propositions. By Theorem 3.1.3 we may assume I ≤ N ,
so N = N0:I .

The involution r of I is a +-reflection of PO+
8 (q). It is important that, by

Lemma 2.4.1, the set D ∩ rN0 = rN0 consists of all the +-reflections of PO+
8 (q)

that are contained in N . Therefore when N and N0 have natural geometric
descriptions in terms of V = F8

q, the number |D ∩ N | = 3|D ∩ rN0| can be
calculated by counting +-reflections or their associated centers.

( 4.2) Lemma. Let H0 be a normal subgroup of N0 with CN0(H0) = 1. Then
either [H0, I] 6= 1 or [N0, I] = 1.

Proof. If [H0, I] = 1, then I = CN (H0) is normal in N = N0:I . Therefore
[N0, I] ≤ N0 ∩ I = 1.

12



( 4.3) Proposition. (1) The group N0 has type G2 if and only if N = N0×I.
In this case N = NG(〈t〉) = NG(I) ' G2(q)× Sym(3) and |D ∩N | = 3.

(2) The group N0 does not have type K3.

Proof. For N0 of type G2 or K3, the derived group H0 = N ′
0 is a simple

group not isomorphic to any PΩ+
8 (q0) and has trivial centralizer in N0.

The subgroup H0.I admits the triality, so by Theorem 3.1 we must have
[H0, I] = 1. By Lemma 4.2, we have [N0, I] = 1. (Here and elsewhere we use
Theorem 3.1 in the form: if I normalizes B ≤ M and I does not centralize
a nonsolvable B-composition factor, then the isomorphism type of that factor
either is PΩ+

8 (q0), for some q0, or appears as an B-composition factor with
multiplicity at least three.)

In (1), N0 ' G2(q) is indeed centralized by I and is also the centralizer in
M of the 3-element t. (See [14, Prop. 3.1.1].)

In (2), N0 is PGL3(q) (= PGL+
3 (q)) or PGU3(q) (= PGL−

3 (q)). We have
N = N0.I < NG(I) of type G2, against maximality.

In view of Proposition 4.3 we may now assume that N0 is not contained in
CG(I) = CM (t) = NM (〈t〉) = NM (I). Indeed, we may assume that I centralizes
no appropriate H0 as in Lemma 4.2.

( 4.4) Proposition. If N0 has type Sa, S2, or K5, then |D∩N | is, respectively,
3`(q0) (for q = qa

0), 6`(q0) (for q = q2
0), or 3`(2) and divides |D| = 3`(q).

Proof. For Sa and K5, the subgroup N0 is PΩ+
8 (q0) with, respectively,

q = qa
0 and q0 = 2. As I acts nontrivially on N0, by Theorem 3.1 we have

〈D ∩N〉 = PΩ+
8 (q0):Sym(3). In this case |D ∩N | = 3`(q0) by Theorems 3.1.3

and 3.2. Therefore |D∩N | divides |D| = 3`(q) by Theorem 3.2 and Lemma 3.3.
For S2, N0 is PΩ+

8 (q0).22 with q = q2
0 , odd. By Lemma 4.2, I acts nontriv-

ially on N ′
0 = PΩ+

8 (q), hence by Theorem 3.1 we have N ′
0.I = PΩ+

8 (q0):Sym(3).
Therefore N0.I = N ' PΩ+

8 (q0):Sym(4) ≤ Aut(PΩ+
8 (q0)). Hence |D ∩ N | =

6`(q0), a divisor of |D| = 3`(q2
0) by Theorem 3.2 and Lemma 3.3.2.

Remark. Indeed G does contain subgroups with triality of each of these
types [9].

For N0 of type Sa, we have PΩ+
8 (q0):Sym(3) with qa

0 = q, corresponding
to the subfield subloop P (q0) of P (q). For N0 of type S2, we have GL(K) =
PΩ+

8 (q0):Sym(4), corresponding within P (q2
0) to the subloop K = PGLL(q0)

of all unit octonians over Fq0 (not just those of norm 1) modulo scalars, since
the nonsquares of Fq0 are squares in Fq2

0
.

The unit integral octonians span (modulo {±I}) a subloop P (2) [6]. There-
fore all Paige loops P (F ) contain P (2), as in K5.

( 4.5) Proposition. If N0 has type N1 or N2, then |D ∩N | is, respectively,
3(q + 1)/d or 3(q − 1)/d and so divides |D|.
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Proof. By Lemma 2.4, |D∩N | = 3|D∩rN0|. Here D∩rN0 = rN0 consists
of those +-reflections of PO+

8 (q) that are in N .
See [14, Prop. 3.2.2-3]. Set N− = N1 and N+ = N2. Then N0 of type Nε

leaves invariant a decomposition V = Uε ⊥ Wε, where Uε is a nondegenerate
2-space of ε-type. On Uε the group N0 induces at least Ωε

2(q) ' Zq−ε1, transitive
on the nonsingular 1-spaces of +-type in Uε. If (q, ε) = (2,−), set E = N ′

0 and
otherwise set E = N ′′

0 . Then the nondegenerate 6-space Wε = [V,E] of ε-type
admits the characteristic subgroup E ' SLε

3(q) of N0 acting irreducibly. (Here
SL+

3 (q) = SL3(q) and SL−
3 (q) = SU3(q).) Elements of rN0 must therefore

respect the decomposition.
If (q, ε) 6= (2,−) then E is quasisimple, and [I, E] = 1 by Theorem 3.1.3.

When (q, ε) = (2,−), the characteristic subgroup Z(E) ' Z3 is fixed-point-free
on W−; so the +-reflection r does not invert Z(E) and instead must centralize
it. Therefore in all cases no +-reflection of rN0 has its center in Wε.

A +-reflection s of rN0 must leave Wε invariant, so by the previous paragraph
its center belongs to W⊥

ε = Uε. Conversely, the +-reflection r has its center in
Uε, so rN0 contains all +-reflections with center in Uε. Thus we have |D∩N | =
3|D ∩ rN0| = 3(q − ε1)/d, always a divisor of 3`(q) = 3q3(q4 − 1)/d.

Remark. Here we find subloops of order (q−ε1)/d that are cyclic subgroups
of P (q) [9]. Especially they are not maximal, since Moufang proved that all 2-
generated Moufang loops are groups ([4, §7.4],[20, IV.2.1]).

(4.6) Proposition. N0 does not have type N3.

Proof. A subgroup N0 of type N3 is the normalizer of a Sylow l-subgroup,
for any odd prime divisor l of q2 + 1. (See [14, Prop. 3.3.1] for properties of
subgroups of type N3.) N0 leaves invariant a direct sum decomposition into
4-spaces, V = W0 ⊥ W1. It contains a characteristic subgroup Z ' Zl×Zl that
acts on each Wi irreducibly without fixed points, the two representations not
being isomorphic. An element g ∈ O+

8 (q) of order 2 that switches W0 and W1

has [V, g] of dimension 4 and so is not a reflection. A +-reflection s of N would
therefore fix each Wi, acting on Z and the induced Zl. But then, for 1 6= z ∈ Z,
the dihedral group S = 〈s, sz〉 of order 2l would be irreducible on [Wi, S] = Wi,
a 4-space, for one of the values of i. This is impossible since S is generated by
two reflections.

( 4.7) Proposition. If N0 has type N4, then |D∩N | divides 24 and so divides
|D|.

Proof. Here N0 ' [29]:GL3(2), where S = O2(N0) of order 29 has S′ =
Z(S) ' 23 with GL3(2) acting naturally. (In [14] see 3.4.2 and the proof of
4.1.10.)

By Theorem 3.1.3 we have [I, N0] ≤ S. Let H ≤ N0 with H ' GL3(2).
The 3-element t of I must have a fixed point in its action on the N -space
{HN0} = {HS} of size a power of 2. Therefore we may assume t ∈ NG(H). But
then [t, H] ≤ H ∩ S = 1, so H ≤ CM (t) = CM (I) by Proposition 4.3.1.
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The group I × H acts on Z(S) with H irreducible, so [I, Z(S)] = 1. With
N̄ = N/Z(S), we then have by the previous paragraph and Lemma 2.4

|D ∩N | = |D ∩ IS| = |D̄ ∩ IS| = 3|D̄ ∩ r̄S̄ | .

As S̄ is abelian of order 26, we find that |D∩N | divides 3.23. By Lemma 3.3.3,
this divides |D|.

Remark. Maximal subgroups of type N4 only occur when q is an odd prime.
In that case D ∩N has size exactly 3.23 = 24; see [9]. The +-reflections of rN0

are those with centers from an orthonormal basis for V , eigenvectors for Z(S).
The corresponding subloop is an elementary abelian group of order 8.

( 4.8) Proposition. If N0 has type P2 or Rs2, then |D ∩N | is, respectively,
3q3(q − 1)/d or 3q3(q2 − 1)/d and so divides |D|.

Proof. Let N0 have type Rs2. There is a totally singular 2-space T of
V with N0 its stabilizer in M and N its stabilizer in G. (See [14, p.194].)
As T is totally singular, the +-reflection a fixes T if and only if its center
Z = [V, a] is perpendicular to T . The subspace T⊥ is equal to T ⊕ Y , where
Y is a nondegenerate 4-space of +-type. The subspace Y contains q(q2 − 1)/d
nonsingular 1-spaces of +-type, so T⊥ contains q2 · q(q2 − 1)/d such 1-spaces.
Therefore |D ∩N | = 3q3(q2 − 1)/d, a divisor of |D| = 3`(q) = 3q3(q4 − 1)/d, as
desired.

Suppose N0 has type P2. Thus N0 is the stabilizer of a singular 1-space
U and two totally singular 4-spaces, W1 and W2, with U contained in the
subspace W1 ∩ W2 of dimension 3. (See [14, p.192].) In the action of G =
PΩ+

8 (q):Sym(3) on its D4 geometry, the subgroup N is the global stabilizer of
the set {U,W1,W2}, permuting these as Sym(3).

Consider a +-reflection a of rN0. The element a fixes U and switches W1

and W2. The center Z = [V, a] is nonsingular of +-type. The reflection a fixes
the 5-space W = W1 + W2. As W ≥ W⊥ = W1 ∩ W2, we must have Z ≤ W .
Conversely, for any +-reflection b with [V, b] ≤ W , we have b switching W1 and
W2, the only two maximal totally singular subspaces of W . Also b fixes U , since
U is in b-invariant W1 ∩ W2, a totally singular subspace of [V, b]⊥ = CV (b).
Therefore b ∈ rN0.

Thus |D ∩ rN0| equals the number of 1-spaces in W of +-type. Here W
is the perpendicular direct sum of the totally singular 3-space W1 ∩ W2 and
a nondegenerate 2-space X of +-type. The subspace X contains (q − 1)/d
nonsingular 1-spaces of +-type, so W contains q3 · (q − 1)/d such 1-spaces.

Therefore |D ∩N | = 3q3(q − 1)/d also divides 3`(q), as desired.

Remark. Corresponding loops of cardinality q3(qe− 1)/d, with e = 1, 2, do
exist [9]. In fact, a loop for type P2 is a subloop of a loop for type Rs2.

( 4.9) Proposition. If N0 has type I+2, I−2, or I+4, then |D ∩ N | is,
respectively, 12(q − 1)/d, 12(q + 1)/d, or 6q(q2 − 1)/d and so divides |D|.
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Proof. For type Iεe with ε = ± and e = 2, 4, the group N0 is maximal in
PO+

8 (q) (for appropriate q) and leaves invariant a unique decomposition of V
as the perpendicular direct sum of 8/e component e-spaces, each nondegenerate
of ε-type. (See [14, p.177 and 194].)

The reflections of rN0 must respect this decomposition. An element that
switches two of the components has commutator dimension at least 2 and so
is not a reflection. On the other hand, any +-reflection whose center belongs
to one of the components leaves the decomposition invariant and so belongs to
rN0. For e = 2, this gives |D ∩ rN0| = 4 · (q − ε1)/d; and, for e = 4 and ε = +,
this gives |D ∩ rN0| = 2 · q(q2 − 1)/d. In all cases, we have |D ∩N | a divisor of
3`(q) = 3q3(q2 − 1)(q2 + 1)/d, as desired.

Remark. The loops corresponding to the cases Iε2 are in fact subloops of
loops coming from the case I+4; see [9].

Theorem 4.1 now follows from Theorem 3.4 and Propositions 4.3-4.9.

Remark. As the remarks of this section indicate, the present arguments
come close to, but fall short of, a classification of the maximal subloops of the
finite Paige loops. We have given the order of the reflection class in each case.
This determines the order of the corresponding subloops, but there could be
isotopic, nonisomorphic loops (necessarily of the same order) corresponding to
the same class. (In fact, this does not happen.) It is also the case that the
various loops may not be maximal. Indeed, the only maximal subloops come
under types Sa, S2, K5, Rs2, and I+4. (When q = 2, a subgroup of type I+4

is contained properly in one of type I−2, but the two subgroups correspond to
the same maximal subloop of order 12.) See [9, 12, 17] for full discussion and
resolution of these questions.
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