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Periodic simple groups
of finitary linear transformations
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In Memory of Dick and Brian

Abstract

A group is locally finite if every finite subset generates a finite subgroup.
A group of linear transformations is finitary if each element minus the identity
is an endomorphism of finite rank. The classification and structure theory for
locally finite simple groups splits naturally into two cases—those groups that
can be faithfully represented as groups of finitary linear transformations and
those groups that are not finitary linear. This paper completes the finitary
case. We classify up to isomorphism those infinite, locally finite, simple groups
that are finitary linear but not linear.

1. Introduction

A group G is locally finite if every finite subset S is contained in a finite
subgroup of G. That is, every finite S generates a finite subgroup 〈S〉.

This paper presents one step in the classification of those locally finite
groups that are simple. We shall be particularly interested in locally finite
simple groups that have faithful representations as finitary linear groups—the
finitary locally finite simple groups.

Let V be a left vector space over the field K. (For us fields will always be
commutative.) Thus EndK(V ) acts on the right with group of units GLK(V ).
The element g ∈ GLK(V ) is finitary if V (g−1) = [V, g] has finite K-dimension.
This dimension is the degree of g on V , degV g = dimK [V, g]. Equivalently, g is
finitary on V if and only if dimK V/CV (g) is finite, where CV (g) = ker (g − 1).
In this case dimK V/CV (g) = degV g.

The invertible finitary linear transformations of V form a normal subgroup
of GLK(V ) that is denoted FGLK(V ), the finitary general linear group. A
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group G is finitary linear (sometimes shortened to finitary) if it has a faithful
representation ϕ : G −→ FGLK(V ), for some vector space V over the field K.

A group G is linear if it has a faithful representation ϕ : G −→ GLn(K)
(= GLK(Kn) ), for some integer n and some field K. Clearly a finite group is
linear and a linear group is finitary, but the reverse implications are not valid
in general.

This paper contains a proof of the following theorem.

(1.1) Theorem. A locally finite simple group that has a faithful repre-
sentation as a finitary linear group is isomorphic to one of:

(1) a linear group in finite dimension;
(2) an alternating group Alt(Ω) with Ω infinite;
(3) a finitary symplectic group FSpK(V, s);
(4) a finitary special unitary group FSUK(V, u);
(5) a finitary orthogonal group FΩK(V, q);
(6) a finitary special linear group FSLK(V, W, m).

Here K is a (possibly finite) subfield of Fp, the algebraic closure of the prime
subfield Fp. The forms s, u, and q are nondegenerate on the infinite dimen-
sional K-space V ; and m is a nondegenerate pairing of the infinite dimensional
K-spaces V and W . Conversely, each group in (2)–(6) is locally finite, simple,
and finitary but not linear in finite dimension.

The classification theory for locally finite simple groups progresses in nat-
ural steps:

(i) Classification of finite simple groups;
(ii) Classification of nonfinite, linear locally finite simple groups;
(iii) Classification of nonlinear, finitary locally finite simple groups;
(iv) Description of nonfinitary locally finite simple groups.

The resolution of (i) is the well-known classification of finite simple groups
(CFSG); see [11]. Less well-known is the full classification up to isomorphism
of the groups in (ii):

(1.2) Theorem (BBHST: Belyaev, Borovik, Hartley, Shute, and Thomas
[4], [6], [18], [43]). Each locally finite simple group that is not finite but has
a faithful representation as a linear group in finite dimension over a field is
isomorphic to a Lie type group Φ(K), where K is an infinite, locally finite field,
that is, an infinite subfield of Fp, for some prime p.

The present Theorem 1.1 resolves the third step, providing the classifica-
tion up to isomorphism of all groups as in (iii). (An earlier discussion can be
found in [15].)
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The original proofs of the BBHST Theorem 1.2 appealed to CFSG, but the
theorem of Larsen and Pink [26] now renders the BBHST theorem independent
of CFSG. Our proof of Theorem 1.1 does not depend upon BBHST, but it does
depend upon a weak version of CFSG (Theorem 5.1 below). The nature of that
dependence is discussed more fully in Section 5. In particular it is conceivable
that the necessary results of Section 5 have geometric, classification-free proofs.

Every group is the union of its finitely generated subgroups. Therefore
every locally finite group is the union of its finite subgroups. This simple
observation is the starting point for our proof of Theorem 1.1. After this
introduction, the second section of the paper discusses the tools—sectional
covers and ultraproducts—used to make the observation precise and useful.
Sectional covers allow us to approximate our groups locally by finite simple
groups. These can then be pasted together effectively via ultraproducts.

The third section on examples describes the conclusions to the theorem
and some of their properties. Pairings of vector spaces and their isometry
groups are discussed in some detail, since this material is not familiar to many
but is crucial for the definition and identification of the examples. The fourth
section gives needed results, several from the literature, on the representations
of finite groups, particularly discussion and characterization of the natural
representations of finite alternating and classical groups. This section includes
Jordan’s Theorem 4.2, which states that a finite primitive permutation group
generated by elements that move only a small number of letters is alternating
or symmetric. The material of Section 5 could be placed in the previous section
since it is largely about representations of finite groups. Indeed its main result
is a version of Jordan’s Theorem valid for all finite linear groups, not just
permutation groups. We have chosen to isolate this section since its Theorem
5.1 of Jordan type constitutes the weak version of the classification of finite
simple groups that we use in proving Theorem 1.1.

The proof of the theorem begins in earnest in Section 6, where the cases
are identified. In Theorem 6.5 an arbitrary nonlinear locally finite simple group
that is finitary is seen to bear a strong resemblance either to an alternating
group or to a finitary classical group. The alternating case is then resolved in
Section 7 and the classical case in Section 8.

Although a classification of locally finite simple groups under (iv) up to
isomorphism is not possible, Meierfrankenfeld [30] has shown that a great deal
of useful structural information can be obtained and then applied. The fini-
tary classification is important here, since Meierfrankenfeld’s structural results
depend critically, via Corollary 2.13 below, on the impossibility of finitary
representation under (iv) .

Wehrfritz [44] has proved that Theorem 1.1 with K allowed to be an
arbitrary division ring can be reduced to the case of K a field. Theorem 1.1
also has applications outside of the realm of pure group theory. Finitary groups
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can be thought of as those that are “nearly trivial” on the associated module.
An application in this context can be found in work of Passman on group rings
[32], [33].

A periodic group is one in which all elements have finite order. The first
published result on locally finite groups was:

(1.3) Theorem (Schur [38]). A periodic linear group is locally finite.

An easy consequence [13], [35] is

(1.4) Theorem. A periodic finitary linear group is locally finite.

Therefore the groups of the title are classified by Theorem 1.1.
Our basic references for group theory are [1], [10] and [25] for locally

finite groups. For basic geometry, see [3], [42]. For more detailed discussion
of finitary groups, locally finite simple groups, and their classification, see the
articles [15], [17], [30], [36] in the proceedings of the Istanbul NATO Advanced
Institute.

2. Tools

We have already remarked that every locally finite group is the union of
its finite subgroups. In this section we formalize and refine this observation in
several ways. For further discussion on several of the topics in this section, see
[25, Chaps. 1§§A,L, 4§A] and [15, Appendix].

2.1. Systems and covers. We say that the set I is directed by the partial
order � if, for every pair i, j of elements of I, there is a k ∈ I with i � k � j.
An important example of a directed set is the set of all finite subsets of a given
G, ordered by containment.

Just as we can reconstruct a set from the set of its finite subsets, we wish
to reconstruct a more structured object G from a large enough collection G
of its subobjects. We say that the direct ordering (I,�) on the index set I

is compatible with G = {Gi | i ∈ I } if Gi ≤ Gj whenever i � j. (We write
A ≤ B and B ≥ A when we mean that A is a subobject of B.) Then, for
each pair i, j ∈ I, there is a k ∈ I with Gi ≤ Gk ≥ Gj as I is directed. If
additionally G =

⋃
i∈I Gi then G is called a directed system in G with respect

to the directed set (I,�). For us the canonical example of a directed system
is the set of all finitely generated subgroups of a group—in particular, the set
of all finite subgroups of a locally finite group—with respect to containment.

A local system {Gi | i ∈ I } in G (here typically a group, field, or vector
space) is a set of Gi ≤ G with the properties

(a) G =
⋃

i∈I Gi and

(b) for every i, j ∈ I there is a k with Gi ≤ Gk ≥ Gj .
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Therefore a local system is a directed system in G with respect to any direct
ordering of its index set that is compatible. In this situation G is not only the
union of the Gi, it is actually (isomorphic to) the direct limit lim

−→(I,�)
Gi of the

Gi with respect to containment. (For a formal discussion of direct limits, see
[19, §2.5].) If G is a group then a local system is also called a subgroup cover.

A group G is quasisimple if it is perfect (G = G′, the derived subgroup)
and G/Z(G) is simple.

(2.1) Lemma. Let the group G have a subgroup cover {Gi | i ∈ I } that
consists of quasisimple groups. Then G itself is quasisimple. Indeed G is simple
if and only if, for every g ∈ G, there is some i with g ∈ Gi \ Z(Gi).

Proof. We must prove that G is perfect and G/Z(G) is simple. For any
element g ∈ G, there is an i ∈ I with g ∈ Gi = G′

i ≤ G′; so G is perfect.
In particular Z(G/Z(G)) = 1, so we now assume that Z(G) = 1 and aim to
prove that G is simple. The group G is simple if and only if h ∈ 〈gG〉 for
all pairs g, h ∈ G of nonidentity elements. As g is not central in G, there
are i, j ∈ I with g ∈ Gi \ Z(Gi) and h ∈ Gj . Then there is a k ∈ I with
〈Gi, Gj〉 ≤ Gk, hence g ∈ Gk \ Z(Gk) and h ∈ Gk. As Gk is quasisimple,
h ∈ Gk = 〈gGk〉 ≤ 〈gG〉 as desired.

A section of the group X is a quotient of a subgroup. That is, for a
subgroup A ≤ X and normal subgroup B of A, the group A/B is a section of
X. We often write the section A/B as an ordered pair (A, B), keeping track of
the subgroups involved, not just the isomorphism type of the quotient A/B.

In the group G consider the set of pairs S = { (Gi, Ni) | i ∈ I } with each
(Gi, Ni) a section of G. Give I an ordering such that

i ≺ j =⇒ Gi < Gj and Gi ∩ Nj = 1 .

If (I,�) is a directed set and {Gi \ Ni | i ∈ I } is a directed system in G \ 1
with respect to (I,�), then S is called a sectional cover of G. That is, S =
{ (Gi, Ni) | i ∈ I } is a sectional cover of G precisely when it satisfies:

(c) G =
⋃

i∈I Gi and

(d) for every i, j ∈ I there is a k ∈ I with Gi ≤ Gk ≥ Gj and
Gi ∩ Nk = 1 = Gj ∩ Nk.

If { (Gi, Ni) | i ∈ I } is a sectional cover, then {Gi | i ∈ I } is a subgroup cover.
Conversely, if {Gi | i ∈ I } is a subgroup cover, then { (Gi, 1) | i ∈ I } is a
sectional cover.

A sectional cover S = { (Gi, Ni) | i ∈ I } is said to have property P if
each section Gi/Ni has property P. In particular S is a finite sectional cover
precisely when each Gi/Ni is finite, and S is a finite simple sectional cover
precisely when each Gi/Ni is a finite simple group.
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We then have:

(2.2) Lemma. Let S = { (Gi, Ni) | i ∈ I } be a collection of sections from
the group G. The following are equivalent :

(1) S is a finite sectional cover of G;

(2) G is locally finite, and S satisfies:

(c′) G =
⋃

i∈I Gi, with each Gi finite, and

(d′) for every i ∈ I there is a k ∈ I with Gi ≤ Gk and Gi ∩Nk = 1;

(3) G is locally finite, and S satisfies:

(c′′) each Gi is finite, and

(d′′) for every finite A ≤ G there is a k ∈ I with A ≤ Gk and
A ∩ Nk = 1.

The modern approach to locally finite simple groups began with Otto
Kegel’s fundamental observation:

(2.3) Theorem (Kegel). Every locally finite simple group has a finite
simple sectional cover.

There are numerous proofs. See Kegel’s original paper [24] and also [15, Prop.
3.2], [30, Lemma 2.15], or [34, Th. 1].

Kegel’s result provides the critical fact that every locally finite simple
group can be papered over with its finite simple sections, leaving no seams
showing. Finite simple sectional covers { (Gi, Ni) | i ∈ I } are therefore called
Kegel covers. The subgroups Ni are the Kegel kernels, while the simple quo-
tients Gi/Ni are the Kegel quotients or Kegel factors. (The converse of the
theorem does not hold. That is, a locally finite group with a Kegel cover need
not be simple; see [25, Remark, p. 116].)

It is easy to see that, for a locally finite simple group G with the finite
quasisimple sectional cover Q = { (Hi, Oi) | i ∈ I }, the set { (Hi, Zi) | i ∈ I } is
a Kegel cover, where Zi is the preimage of Z(Hi/Oi) in Hi. Accordingly, we
call such Q a quasisimple Kegel cover.

An infinite locally finite simple group G will have many Kegel covers.
Theorem 1.1 is proved by finding particularly nice Kegel covers and then using
them to construct the geometry for G. An important tool for taking a Kegel
cover and pruning it down to a more useful one is the following:

(2.4) Lemma (coloring argument). Let G be a locally finite group, and
suppose that the pairs of the finite sectional cover S = { (Gi, Ni) | i ∈ I } are
colored with a finite set 1, . . . , n of colors. Then S contains a monochromatic
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subcover. That is, if Sj is the set of pairs from S with color j, for 1 ≤ j ≤ n,
then there is a color j for which Sj is itself a sectional cover of G.

Proof. Otherwise, for each j, there is a finite subgroup Aj of G that is not
covered by any section colored by j. The subgroup A = 〈A1, . . . , Aj , . . . , An〉
is therefore not covered by a section with any of the colors 1, 2, . . . , n. As A is
generated by a finite number of finite groups, it is finite itself. Therefore some
section of S covers A, a contradiction which proves the lemma.

As an easy application we have

(2.5) Corollary. Let G be a locally finite group with sectional cover
S = { (Gi, Ni) | i ∈ I }. For the finite subgroup A ≤ G, let

SA = { (Gi, Ni) | i ∈ I, A ≤ Gi, A ∩ Ni = 1 } .

Then SA is also a sectional cover of G.

We can also use simplicity to trade one Kegel cover for another.

(2.6) Lemma. Let {Gi | i ∈ I } be a directed system of subgroups of G

with respect to the directed set (I,�). For each i ∈ I, let Hi be a normal
subgroup of Gi with the additional property that Hi ≤ Hj whenever i � j.
Then {Hi | i ∈ I } is a directed system in H with respect to (I,�), where
H =

⋃
i∈I Hi = lim

−→(I,�)
Hi is the direct limit of the Hi and is normal in G.

In particular, if G is simple and some Hi is nontrivial, then H = G.
Assume additionally that { (Gi, Ni) | i ∈ I } is a Kegel cover of simple G, and
set Oi = Hi∩Ni for i ∈ I. Then there is a subset I0 of I with { (Hi, Oi) | i ∈ I0 }
a Kegel cover of G whose collection of Kegel quotients is contained in that of
the original cover.

Proof. As the Gi are directed by (I,�), so are the normal subgroups Hi.
Therefore their direct limit H is normal in G.

Assume now that G is simple and that H0 is nontrivial. Let

I0 = { i ∈ I |G0 ≤ Gi, G0 ∩ Ni = 1 }.
By Corollary 2.5 { (Gi, Ni) | i ∈ I0 } is a Kegel cover. For i ∈ I0,

Hi/Oi = Hi/Hi ∩ Ni � HiNi/Ni = Gi/Ni .

If Gi/Ni covers Gj , then Hi/Oi covers Hj ; so { (Hi, Oi) | i ∈ I0 } is a Kegel
cover as described.

One case of interest sets Hi = G
(∞)
i , the last term in the derived series

of Gi. If locally finite G is nonabelian and simple, then the lemma provides
a Kegel cover { (Hi, Oi) | i ∈ I0 } with each Hi perfect. In particular a locally
finite simple group that is locally solvable must be abelian hence cyclic.
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Let

K∗ = { (Gi, Ni) | i ∈ I }
be a Kegel cover of the locally finite simple group G. We know that, for many
subsets I0 of I, the set

K0 = { (Gi, Ni) | i ∈ I0 }
is actually a Kegel subcover, perhaps by Lemma 2.4. Equally well, for any
nonidentity finite subset S of G, by Lemma 2.6 there is a subset I1 of I for
which the set

K1 = { (G1
i = 〈(S ∩ Gi)Gi〉, N1

i = G1
i ∩ Ni) | i ∈ I1 }

is also a Kegel cover. We call any Kegel cover K, got by a succession of these
operations from K∗, an abbreviation of K∗. An abbreviation of K∗ is indexed
by a subset I∞ of I; and, for each i ∈ I∞, the Kegel quotient is the same as
that for K∗.

Additionally, we say that one quasisimple Kegel cover is an abbreviation
of another if the associated Kegel cover of the first is an abbreviation of that
for the second.

2.2. Ultraproducts and representation. Let I be any nonempty set. A
filter F on I is a set of subsets of I that satisfies two axioms:

(a) if A, B ∈ F , then A ∩ B ∈ F ;

(b) if A ∈ F and A ⊆ B, then B ∈ F .

The set of all subsets of I is the trivial filter. If the set I is infinite, then the
cofinite filter, consisting all subsets of I with finite complement, is nontrivial.

If the filter F on I contains A and B with A∩B = ∅, then it is trivial. A
filter that instead satisfies:

(c) for all A ⊆ I, A ∈ F if and only if I \ A �∈ F
is a maximal nontrivial filter and is called an ultrafilter. A degenerate example
is the principal ultrafilter Fx, composed of all subsets containing the element
x ∈ I. A nontrivial filter is principal if and only if it contains a set with exactly
one element.

The union of an ascending chain of nontrivial filters on I is itself a non-
trivial filter, so that by Zorn’s lemma every nontrivial filter is contained in
an ultrafilter. In particular, for infinite I there are nonprincipal ultrafilters
containing the cofinite filter.

Compare the following with Lemma 2.4 and Corollary 2.5.

(2.7) Lemma. Let F be a filter on I.

(1) If F is an ultrafilter and A ∈ F , then for any finite coloring of A there
is exactly one color class that belongs to F .
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(2) For A ∈ F , put FA = {B ∈ F | B ⊆ A}. Then FA is a filter on A,
and if F is an ultrafilter then so is FA.

Proof. For (1), consider first a 2-coloring A = A1 ∪A2. If both I \A1 and
I \A2 were in F then (I \A1)∩ (I \A2) = I \A would be as well, which is not
the case. Thus by axiom (c) (applied twice) exactly one of the disjoint sets A1

and A2 belongs to F . Part (1) then follows by induction.
For (2), axioms (a) and (b) for FA come from the same axioms for F .

Axiom (c) for A is the 2-coloring case of (1).

If (I,�) is a directed set, define

F(i) = {a ∈ I | i � a} .

The filter generated by the directed set (I,�) is then

F(I,�) = {A |A ⊇ F(i), for some i ∈ I} .

This filter is nonprincipal precisely when (I,�) has no maximum element.
The ultraproduct construction starts with a collection of sets (structures)

G = {Gi | i ∈ I }. If F is any ultrafilter on the index set I, then the ultraproduct∏
F Gi is defined as the Cartesian product

∏
i∈I Gi modulo the equivalence

relation

(xi)i∈I ∼F (yi)i∈I ⇐⇒ { i ∈ I |xi = yi } ∈ F .

The ultraproduct provides a formal and logical method for pasting to-
gether local information that is putatively related. Ultraproducts share many
properties with their coordinate structures. Ultraproducts of groups are groups,
and (more surprisingly) ultraproducts of fields are fields. Ultraproducts com-
mute with regular products. If we are given coordinate maps αi : Gi −→ Hi,
then there is a naturally defined ultraproduct map

αF =
∏

Fαi :
∏

F Gi −→
∏

F Hi .

Therefore we can carry actions over to ultraproducts. In particular, ultraprod-
ucts of vector spaces are vector spaces. (See [15, Appendix] for more.)

Certain ultraproducts may be thought of as enveloping directed systems
and direct limits.

(2.8) Proposition. Let G = {Gi | i ∈ I } be a directed system in G with
respect to the directed set (I,�). Let F be an ultrafilter containing F(I,�).

Consider the map

Γ: G −→
∏
i∈I

Gi given by g �→ (gi)i∈I ,

where, for g ∈ G,

gk = g if g ∈ Gk

= ? otherwise .
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(By ? we mean any arbitrary member of Gk. When the Gi have algebraic
structure, it is convenient but not necessary to choose the neutral element.)
Then Γ induces an isomorphism ΓF of G into the ultraproduct

∏
F Gi.

Proof. See [15, Th. C.1].

We often identify G with its image in an ultraproduct as in the proposition.
One difficulty with this construction is that the ultraproduct may be a great
deal larger than G. In particular, if the Gi are finite and G is countably infinite,
then

∏
F Gi is uncountable.

The next lemma is a permutation version of the representation theoretic
Theorem 2.10(2) below, and its proof is typical of ultraproduct arguments.

For a permutation g ∈ Sym(Ω), the support of g, denoted [Ω, g], is the set
{ω ∈ Ω |ω.g �= ω } of letters in Ω moved by g. The degree of g in Ω, degΩ g, is
then the cardinality of the support, |[Ω, g]|.

(2.9) Lemma. Let the group G have the subgroup cover {Gi | i ∈ I }, and
let (I,�) be a compatible directed order of the index set I with F an ultrafilter
containing F(I,�). For each i ∈ I, let Ωi be a permutation space for Gi. Suppose
that g is a fixed but arbitrary nonidentity element of G.

If, for each i ∈ I with g ∈ Gi, the degree degΩi
g is at most k, then in the

action of G ≤
∏

F Gi on Ω =
∏

F Ωi we have degΩ g ≤ k. The element g is in
the kernel of the action on Ω if and only if { i ∈ I | g ∈ Gi ∩ ker(Ωi) } ∈ F .

Proof. For each i, give the points ω of Ωi that are moved by g distinct
colors from 1, . . . , k (possible, by hypothesis). In each Ωi, color ω with color
0 if ω.g = ω. (If g �∈ Gi then by convention ω.g = ω for all ω ∈ Ωi, and so
all points of Ωi are colored with 0. This amounts to choosing gi = 1 in the
embedding of G in

∏
F Gi.)

Consider arbitrary o = (ωi)i∈I , representing the point oF of Ω. The
coordinate entries of o are (k+1)-colored from {0, . . . , k}. As F is an ultrafilter,
by Lemma 2.7(1), exactly one of the monochromatic coordinate subsets for o

belongs to F . We then color the point oF of Ω with the corresponding color j.
(This is well-defined: if o′ = (ω′

i)i∈I also represents oF , then { i ∈ I |ωi =
ω′

i has color j } ∈ F .)
For a given color j not 0, there is either one point of Ω colored j or no point

colored j, depending upon whether or not {i ∈ I | a unique ω ∈ Ωi has color j }
belongs to F .

If oF receives the color j, then Io = { i ∈ I |ωi has color j } is in F . If
j = 0 then Co(g) = { i ∈ I |ωi = ωi.g } is equal to Io, and oF is fixed by g. If
j > 0 then Co(g) is within I\Io and so is not in F . That is, oF �= (o.g)F = oF .g.
We conclude that, in its action on Ω, the element g moves at most k points,
namely those colored other than with 0.
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The set { i ∈ I | g ∈ Gi } contains members of F(I,�), and so its comple-
ment J = { i ∈ I | g �∈ Gi } is not in F . Certainly if kerI(g) = { i ∈ I | g ∈
Gi ∩ ker(Ωi) } belongs to F , then g ∈ ker(Ω).

Suppose now that kerI(g) /∈ F . There exist elements o whose only co-
ordinates colored 0 are those of J ∪ kerI(g). As J �∈ F , we must have
I \ {J ∪ kerI(g)} ∈ F by Lemma 2.7(1). Therefore such elements o are not
colored 0. Hence oF .g �= oF , and g �∈ ker(Ω).

In our applications we need to work with projective representations—
homomorphisms into projective groups PGLF (U)—since the natural repre-
sentations of the classical simple groups are projective representations. We
define projective representation in a different but equivalent form. The map
ϕ : G −→ GLF (U) with associated cocycle c : G × G −→ F is a projective
representation provided, for all g, h ∈ G,

ϕ(g)ϕ(h) = c(g, h)ϕ(gh) .

Thus a projective representation whose cocycle is identically 1 is a represen-
tation in the usual sense. As a consequence of this definition, the cocycle c is
characterized by the property:

c(g, h)c(gh, k) = c(g, hk)c(h, k), for all g, h, k ∈ G .

The kernel of the projective representation ϕ is

ker(ϕ) = {g ∈ G |ϕ(g) is scalar on U} ,

and ϕ is nontrivial if ker(ϕ) �= G.
For a linear transformation g ∈ GLF (U) and W ≤ U , we set [W, g] =

W (g − 1); and, for G ⊆ GLF (U), we set [W, G] =
∑

g∈G[W, g]. The degree
of G on U , degU G, is then the dimension dimF [U, G]. We define iterated
commutators via [W, G, H] = [[W, G], H] for G, H ⊆ GLF (U).

(2.10) Theorem ([15, App. §§B, C, D]). Let the group G have the sub-
group cover {Gi | i ∈ I }, and let (I,�) be a compatible directed order of
the index set I with F an ultrafilter containing F(I,�). For each i ∈ I let
(ϕi, ci) : Gi −→ GLFi

(Ui) be a projective representation. Then (ΦF , cF ) : G −→
GLF (U) is a projective representation, where cF =

∏
F ci, F =

∏
F Fi, U =∏

F Ui, and ΦF = (
∏

F ϕi)|G. If { i ∈ I | charFi = p } ∈ F , then charF = p.
The element g ∈ G is in ker(ΦF ) if and only if { i ∈ I | g ∈ Gi ∩ ker(ϕi) } ∈ F .

(1) (Mal’cev’s Theorem) If, for each i ∈ I, the dimension dimFi
Ui is at most

k, then dimF U is at most k.

(2) If, for some g ∈ G and each i ∈ I with g ∈ Gi, the degree of g on Ui,
degUi

ϕi(g), is at most k, then the degree of g on U , degU ΦF (g), is at
most k.
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(3) If each Ui has a ϕi(Gi)-invariant (nondegenerate, nonsingular) form of
type Cl, then on V there is a ΦF (G)-invariant (nondegenerate, nonsin-
gular) form of type Cl. (See Sections 3.2 and 3.3 for the appropriate
definitions.)

Theorem 2.10(1) is Mal’cev’s famous Representation Theorem (see [25,
1.L.6]).

Theorem 2.10(2) is of greatest import to us here. A version of this first
appeared as [13, Th. (3.3)]. We present this and two further versions as corol-
laries.

Consider the subset B �= 1 of the group A. The degree of B in A, degA B,
is the minimum of degU ϕ(B) over all projective representations ϕ : A −→
GLF (U) with b /∈ ker ϕ, for all 1 �= b ∈ B. The degree of A, deg A, is then
degA A.

If S = { (Gi, Ni) | i ∈ I } is a sectional cover of the group G, then the
degrees of S are the degrees of the various quotients Qi = Gi/Ni. For g ∈ G,
the degrees of g in S are the degrees degQi

gNi, for those i ∈ I with g ∈ Gi.

(2.11) Corollary ([13, Th. (3.3)]). A locally finite simple group G that
has a sectional cover in which the degrees of the element g �= 1 are bounded
has a faithful representation as a finitary linear group.

If Q = G/N is an alternating group Alt(Ω), then the natural degree of g in
Q is degΩ gN . If Q is a classical group on Fn, then the natural degree of g in Q

is the minimum of degF n ϕ(gN) over all nontrivial projective representations
ϕ : Q −→ GLn(F ).

(2.12) Corollary ([15, Cor. 3.13]). A locally finite simple group G that
has a sectional cover composed of alternating or classical groups in which the
natural degrees of the element g �= 1 are bounded has a faithful representation
as a finitary linear group.

(2.13) Corollary. For the nonfinitary locally finite simple group G, in
every sectional cover S the degree of every element g �= 1 is unbounded. In
particular, the degrees of S are unbounded.

From the point of view of classification theory for locally finite simple
groups, the present paper completes the classification of all finitary examples;
so to go further we would only need to consider nonfinitary groups. In that
case the corollaries, together with the classification of finite simple groups,
imply that Kegel covers are essentially composed of alternating and classical
groups of unbounded degree in which every nonidentity element has unbounded
(natural) degree. The attendant stretching of elements and groups can be put
to good use; see [30].
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3. The examples

3.1. Alternating groups. For any permutation group G ≤ Sym(Ω) and any
field K, the vector space KΩ = {

∑
ω∈Ω aωω | aω ∈ K } has a natural structure

as a KG-module given by( ∑
ω∈Ω

aωω
)
.g =

∑
ω∈Ω

aω(ω.g) .

The augmentation submodule [KΩ, G] =
∑

g∈G KΩ(g − 1) has codimension t,
where t is the number of orbits of G on Ω.

For the element g ∈ Sym(Ω), we have defined previously the degree of g

on KΩ, degKΩ g = dimK [V, g], and the degree of g on Ω, degΩ g = |[Ω, g]|,
where [Ω, g] = {ω ∈ Ω |ω.g �= ω }, the support of g. For nonidentity g these
two degrees are not equal; indeed,

degKΩ g = degΩ g − t ,

where t is the number of orbits of g on [Ω, g] (the number of nontrivial orbits
of g on Ω). Therefore

degKΩ g ≤ degΩ g ≤ 2degKΩ g .

In particular, degΩ g is finite if and only if degKΩ g is finite; and, over a col-
lection of permutation spaces Ω, degΩ g is bounded if and only if degKΩ g is
bounded. (Compare with Lemma 2.9 and Theorem 2.10(2).)

For any set Ω, the finitary symmetric group FSym(Ω) consists of all per-
mutations g of Ω whose support is finite, the elements of finite degree. If the
set Ω is finite then FSym(Ω) is just the full symmetric group Sym(Ω), but for
infinite Ω the finitary group FSym(Ω) is a proper normal subgroup of Sym(Ω).

FSym(Ω) is generated by its 2-cycles. The alternating group, Alt(Ω), is
then the subgroup of all even finitary permutations (products of an even num-
ber of 2-cycles). For |Ω| > 1, it is a normal subgroup of index 2 in FSym(Ω).
Indeed, for |Ω| > 4, Alt(Ω) is the unique minimal normal subgroup of Sym(Ω).

As discussed previously, the infinite set Ω has a directed system consisting
of its finite subsets ∆ (with respect to containment). This means that FSym(Ω)
has a subgroup cover consisting of its finite symmetric subgroups Sym(∆)
(identified with the pointwise stabilizer of Ω \ ∆ in Sym(Ω)), and Alt(Ω) has
the subgroup cover of its finite simple subgroups Alt(∆) [1, (15.16)]. Therefore,
by Lemma 2.2, FSym(Ω) and Alt(Ω) are locally finite; and, by Lemma 2.1,
infinite Alt(Ω) is simple.

If G is an alternating or (finitary) symmetric group on Ω (with |Ω| > 3),
then a natural module for G is the nontrivial irreducible factor in the permu-
tation module KΩ, for any field K. If Ω is infinite or charK does not divide
|Ω|, this is the augmentation module [KΩ, G]. Otherwise it is the quotient of
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[KΩ, G] by the submodule of constant vectors K(1, 1, . . . , 1). The degree in-
equalities above imply that both modules KΩ and [KΩ, G] are finitary. Indeed,
for |Ω| > 2,

FSym(Ω) = Sym(Ω) ∩ FGLK(KΩ) = Sym(Ω) ∩ FGLK([KΩ, G]) .

On the other hand, for infinite Ω the alternating group Alt(Ω) is not linear of
finite degree by

(3.1) Proposition ([13, (4.4)]). If H ≤ GLm(K) with H/M � Alt(n)
for n ≥ 16, then m ≥ n − 2.

In partial summary, we have

(3.2) Theorem. Let Ω be infinite. The group Alt(Ω) is a locally finite
simple group. Over any field K, the permutation module KΩ and the natural,
irreducible augmentation submodule of codimension 1 give faithful and finitary
representations. Alt(Ω) is not linear in finite dimension.

In [13] it was proved that any faithful, finitary representation of infinite
Alt(Ω) on V has augmentation module [V, Alt(Ω)] equal to a direct sum of
irreducible natural modules.

3.2. Pairings and forms. Let K be a division ring, V = KV , a left K-
space, and W = WK , a right K-space. Following Baer [3, pp. 34–36], a pairing
of V and W is a bilinear map m : V × W −→ K. That is,

(a) we have

(i) m(u + v, w) = m(u, w) + m(v, w) and
(ii) m(u, w + y) = m(u, w) + m(u, y),

for all u, v ∈ V and w, y ∈ W ; and

(b) m(av, wb) = am(v, w)b, for all v ∈ V , w ∈ W , and a, b ∈ K.

The canonical example m = mcan lets W = V ∗, the dual of V , and sets
mcan(v, λ) = vλ, for all v ∈ V and λ ∈ V ∗.

Let U be a subspace of V and Y a subspace of W . Then we set

U⊥ = {w ∈ W |m(u, w) = 0, for all u ∈ U } and
⊥Y = { v ∈ V |m(v, y) = 0, for all y ∈ Y } .

The pairing m : V × W −→ K is nondegenerate if the radicals Rad(W, m) =
V ⊥ and Rad(V, m) = ⊥W are both 0. If U ≤ V and Y ≤ W with m|U×Y

identically 0, then we call the pair (U, Y ) (iv) totally isotropic.



PERIODIC SIMPLE GROUPS OF FINITARY LINEAR TRANSFORMATIONS 459

The following are elementary:

(3.3) Lemma. The pairing m : V ×W −→ K is nondegenerate if and only
if the map w �→ m(·, w) is an injection of W into V ∗ and the map v �→ m(v, ·)
is an injection of V into W ∗.

(3.4) Lemma. Let m : V × W −→ K be a nondegenerate pairing. Let
finite dimensional U ≤ V and finite dimensional Y ≤ W .

(1) The codimension of U⊥ in W equals the dimension of U , and ⊥(U⊥) = U .

(2) The codimension of ⊥Y in V equals the dimension of Y , and (⊥Y )⊥ = Y .

(3) m|U×Y is nondegenerate if and only if dimK U = dimK Y , V = U ⊕ ⊥Y ,
and W = Y ⊕ U⊥.

In particular, for the finite dimensional space V = U there is an essentially
unique nondegenerate pairing, the canonical one, mcan with W = Y = V ∗.
This is not the case for infinite dimensional V . Let B = { vi | i ∈ I } be a
K-basis for V . For each i ∈ I we have the element v∗i ∈ V ∗ given by

vi.v
∗
i = 1 and vj .v

∗
i = 0, for j �= i .

The set { v∗i | i ∈ I } is “dual” to B and linearly independent (although it is
a basis of V ∗ if and only if dimK V is finite). Let V B be the subspace of
V ∗ spanned by the v∗i . Then the restriction of the canonical pairing, mB =
mcan|V ×V B , is a nondegenerate pairing of V and V B. For dimK V infinite,

dimK V ∗ = |K|dimK V > dimK V = dimK V B

(see [7, Lemma 5.1]); and the two nondegenerate pairings mcan and mB of V

are different in an essential way.
We shall need the following.

(3.5) Lemma. Let m : V × W −→ K be a nondegenerate pairing. Let
finite dimensional U0 ≤ V and finite dimensional Y0 ≤ W . Then there are
U and Y with U0 ≤ U ≤ V , Y0 ≤ Y ≤ W , m|U×Y nondegenerate, and
dimK U = dimK Y ≤ 2 max(dimK U0,dimK Y0).

Proof. We may assume that dimK U0 = dimK Y0 = d, say.
Let U1 be a complement to ⊥Y0 + U0 in V :

V = (⊥Y0 + U0) ⊕ U1 = ⊥Y0 + (U0 ⊕ U1) .

Set U = U0 ⊕ U1 with dimK U = k ≤ 2d. Now

0 = V ⊥ = (⊥Y0)⊥ ∩ U⊥ = Y0 ∩ U⊥



460 J. I. HALL

by Lemma 3.4(2), so there is a Y with Y0 ≤ Y ≤ W and

W = Y ⊕ U⊥ .

Here U⊥ has codimension k in W ; hence dimK Y = dimK U = k ≤ 2d. As
before

0 = ⊥W = ⊥Y ∩ ⊥(U⊥) = ⊥Y ∩ U .

Since ⊥Y has codimension k and U has dimension k,

V = ⊥Y ⊕ U .

Therefore m|U×Y is nondegenerate by Lemma 3.4(3).

We next wish to study self-pairings of the left K-space V . To make sense
of this, we must give V the structure of a right K-space. When σ is an anti-
isomorphism of K, V can be viewed as a right K-space V σ whose addition is
that of V but with scalar multiplication given by

b.v = v.bσ ,

for all v ∈ V and b ∈ K. The same equality allows us to associate with each
right K-space V a left K-space V σ−1

(so that (V σ)σ−1
= V ). The identity

map is an anti-isomorphism precisely when K is a field. The associated right
(respectively, left) K-space V 1 is the transpose of the left (respectively, right)
K-space V .

A self-pairing for V is then a pairing of V and V σ (for some anti-isomor-
phism σ of K) and so can be thought of as a map m : KV ×KV −→ K that is
biadditive (as in (a) above) and satisfies the law

(b′) m(av, bw) = a m(v, w) bσ, for all v, w ∈ V and a, b ∈ K.

A map m : V ×V −→ K with (a) and (b′) is usually called a σ-sesquilinear form
on V . In particular, the classical reflexive sesquilinear forms can be discussed
in this framework.

The σ-sesquilinear form is reflexive provided ⊥U = U⊥, for all U ⊆ V .
The three cases we study are the classical sesquilinear forms:

(1) s is a symplectic form on V if s(x, x) = 0, for all x ∈ V , so that s(x, y) =
−s(y, x), for all x, y ∈ V , with σ = 1.

(2) u is a unitary form on V if u(x, y) = u(y, x)σ, for all x, y ∈ V , where σ

has order 2.

(3) b is an orthogonal form on V if b(x, y) = b(y, x), for all x, y ∈ V , with
σ = 1. (Note that in characteristic 2 a symplectic form is a special type
of orthogonal form.)
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For a sesquilinear form f on V , a subspace U of V is totally isotropic if the
pair (U, U) is totally isotropic. The subspace U is nondegenerate if the radicals
U ∩ U⊥ and U ∩ ⊥U are both 0, that is, if the restriction of m to U × U is
nondegenerate. For the reflexive form f , the radical of U is Rad(U, f) = U∩U⊥.

Related to Lemma 3.5 is the well-known

(3.6) Lemma. Let f be a nondegenerate classical sesquilinear form on the
K-space V . Let finite dimensional U0 ≤ V . Then there is a nondegenerate U

with U0 ≤ U ≤ V and dimK U ≤ 2 dimK U0.

A quadratic form q : V −→ K on the (left) vector space V over the field
K is a map that satisfies

(c) q(av) = a2q(v), for all a ∈ K and v ∈ V ;

(d) b(u, v) = q(u + v) − q(u) − q(v) is an orthogonal form on V .

In characteristic other than 2 we have q(v) = b(v, v)/2, and conversely q(v) =
b(v, v)/2 gives a quadratic form associated with orthogonal b. Therefore in this
case quadratic forms and orthogonal forms are essentially equivalent. When
charK = 2 the orthogonal form b associated with the quadratic form f is
in fact symplectic, but a given symplectic form may have many associated
quadratic forms.

If q is a quadratic form on V , then the subspace U is totally singular if
the restriction of q to U is identically 0. A totally singular subspace for q must
be totally isotropic for the associated orthogonal form b, but in characteristic
2 totally isotropic subspaces need not be totally singular.

We continue to call q nondegenerate when Rad(V, q)=Rad(V, b)=V ⊥=0.
We also say that q is nonsingular when its singular radical

SRad(V, q) = { v ∈ Rad(V, q) | q(v) = 0 }

is 0. If q is nondegenerate, then it is nonsingular. If charK �= 2 the converse
is true, but if charK = 2 this need not be the case.

Let K be a field of characteristic 2, and further assume that K is perfect.
(That is, the Frobenius endomorphism ϕ : a �→ a2 is an automorphism. This is
certainly the case when K is finite, locally finite, or algebraically closed.) The
restriction of q to Rad(V, q) then satisfies

0 = b(u, v) = q(u + v) − q(u) − q(v) and q(av) = a2q(v) ,

for all u, v ∈ Rad(V, q) and a ∈ K. Therefore q is a ϕ-semilinear map from
Rad(V, q) to K. The kernel of this map is SRad(V, q), which thus is a subspace
of codimension at most 1 in Rad(V, q).

In the interest of uniformity, we shall refer to each of the various pair-
ings and forms discussed above as a form of type Cl, for an appropriate
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Cl ∈ {GL,SL,Sp,GU,SU,GO,Ω}. (The labels actually refer to the associ-
ated classical isometry groups. See Section 3.3 below.) Specifically, the form f

is of type Sp if it is symplectic. The form f is of type GU or SU if it is a unitary
σ-sesquilinear form. By a form of type GO or Ω, we shall mean a quadratic
or orthogonal form (as determined by the context). If f is a pairing of some
V and W , then f is a form of type GL or SL. For Cl ∈ {Sp,GU,SU,GO,Ω},
a form f of type Cl (but not quadratic) can be viewed either as a classical
σ-sesquilinear form f : V × V −→ K or as a pairing f : V × V σ −→ K. Sim-
ilarly, if V and W are both left spaces over the field K, then by a form f of
type GL or SL on V ×W we mean a pairing f : V ×W 1 −→ K of V with the
transpose of W .

Furthermore, when we say that f is a form of type Cl with respect to σ, we
mean that either Cl ∈ {GU,SU} and f is a unitary σ-sesquilinear form with
σ an order 2 automorphism of the associated field or Cl /∈ {GU,SU} and σ is
the identity automorphism of the field.

3.3. Classical isometry groups. If V is a left or right K-space, then
GLK(V ) is the group of all invertible K-linear transformations. We also use
GL(VK) for a right K-space V and GL(KV ) for a left space. The finitary
general linear group FGLK(V ) is the corresponding group of invertible finitary
linear transformations. If K is a field, then the determinant homomorphism
det : FGLK(V ) −→ K, given by det(g) = det(g|[V,g]), has kernel the fini-
tary special linear group FSLK(V ). As is usual, we write SLK(V ) in place of
FSLK(V ) when V has finite dimension over the field K.

As GL(KV ) acts on V on the right and GL(WK) acts on W on the left,
the pair a = (g, h) ∈ GL(KV ) × GL(WK) acts on V × W on the right by

(v, w).a = (v, w).(g, h) = (v.g, h.w) ,

for all (v, w) ∈ V × W . (We also write v.a for v.g and a.w for h.w.) We then
have

(v, w)(g1, h1)(g2, h2) = (v.g1, h1.w)(g2, h2) = (v.g1g2, h2h1.w) .

Thus multiplication in the group GL(KV ) × GL(WK) is, for us, given by
(g1, h1)(g2, h2) = (g1g2, h2h1).

An isometry of the pairing m : V × W −→ K is an element a = (g, h) of
GL(KV ) × GL(WK) with

m(v, w) = m(v.g, h.w) = m(v.a, a.w) ,

for all (v, w) ∈ V × W . The subgroup of GL(KV ) × GL(WK) consisting
of all isometries of m will be denoted GLK(V, W, m). If G is a subgroup of
GLK(V, W, m), then we say that m is G-invariant.

We shall be concerned primarily with nondegenerate pairings. In these
cases, by Lemma 3.3 we may view W as a subspace of V ∗ or V as a subspace
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of W ∗ and m as a restriction of mcan. Each element g ∈ GLK(V ) acts naturally
on V ∗ via

v(gµ) = (vg)µ ,

for all v ∈ V and µ ∈ V ∗; hence (g, g−1) ∈ GLK(V, V ∗, mcan).

(3.7) Lemma. Let m : V ×W −→ K be a pairing, and let A ≤ GLK(V, W, m).

(1) With a slight abuse of notation,

CW/V ⊥(A) =
⋂

(g,h)∈A

CW/V ⊥(h) =
∑

(g,h)∈A

(V (g − 1))⊥ = [V, A]⊥

and

CV/⊥W (A) =
⋂

(g,h)∈A

CV/⊥W (g) =
∑

(g,h)∈A

⊥((h − 1)W ) = ⊥[A, W ] .

(2) If the restriction of m to [V, A] × [A, W ] is trivial, then

[[V, A], A] = [V, A, A] ≤ ⊥W

and

[A, [A, W ]] = [A, A, W ] ≤ V ⊥ .

Proof. (1) For all v ∈ V , fixed w ∈ W , and a = (g, h) ∈ A,

m(v(g − 1), w) =m(vg, w) − m(v, w)

= m(vg, w) − m(vg, hw) = m(vg, (1 − h)w) .

Therefore w ∈ V (g − 1)⊥ = [V, a]⊥ if and only if w + V ⊥ ∈ CW/V ⊥(h) =
CW/V ⊥(a).

(2) By (1) and assumption, CW/V ⊥(A) = [V, A]⊥ ≥ [A, W ].

(3.8) Proposition. Let m : V × W −→ K be a nondegenerate pairing,
and let a = (g, h) ∈ GLK(V, W, m).

(1) g = 1 if and only if h = 1.

(2) g ∈ FGLK(V ) if and only if h ∈ FGLK(W ). In this case degV g =
degW h (written as degV ×W a).

(3) For K a field and dimK V = dimK W finite, g ∈ SLK(V ) if and only if
h ∈ SLK(W ).

(4) For K a field, g ∈ FSLK(V ) if and only if h ∈ FSLK(W ).
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Proof. Part (1) is an immediate consequence of Lemma 3.7(1).
For (2) assume that degV g is finite. Then

degV g = dimK V (g − 1) = codimK V (g − 1)⊥

= codimK CW (h) = dimK (h − 1)W = degW h ,

as desired.
By Lemma 3.3, for (3) we can identify W with V ∗, so that the ele-

ments of GLK(V, W, m) have the form (g, g−1), as g runs over GLK(V ). Since
(det g)−1 = det g−1, (3) follows.

Part (4) is then a consequence of (2), (3), and Lemma 3.5.

Let FGLK(V, W, m) consist of those elements (g, h) ∈ GLK(V, W, m) with
g ∈ FGLK(V ) and h ∈ FGLK(W ). Similarly, for a field K, let FSLK(V, W, m)
consist of those elements (g, h) ∈ GLK(V, W, m) with g ∈ FSLK(V ) and h ∈
FSLK(W ). For finite dimensional V and W over a field K, SLK(V, W, m)
will be the subgroup of all (g, h) ∈ GLK(V, W, m) with g ∈ SLK(V ) and
h ∈ SLK(W ).

By Proposition 3.8(1), for a nondegenerate pairing m, restriction to the
first coordinate, (g, h) �→ (g, h)|V = g, gives an isomorphism of GLK(V, W, m)
with a subgroup of GLK(V ). Similarly, (g, h) �→ (g, h)|W = h is an anti-
isomorphism of GLK(V, W, m) into GLK(W ). In particular,

(3.9) Corollary. (1) For K a division ring,

GLK(V, V ∗, mcan) � GLK(V, V ∗, mcan)|V = GLK(V )

and

FGLK(V, V ∗, mcan) � FGLK(V, V ∗, mcan)|V = FGLK(V ) .

(2) For K a field,

FSLK(V, V ∗, mcan) � FSLK(V, V ∗, mcan)|V = FSLK(V ) .

(3.10) Corollary. Let m : U × Y −→ K be a nondegenerate pairing
with U or Y finite dimensional over the division ring K.

(1) We have

GLK(U, Y, m) � GLK(U, Y, m)|U = GL(KU) = GLK(U)

and

GLK(U, Y, m) � GLK(U, Y, m)|Y = GL(YK) = GLK(Y ) .

(2) For K a field,

SLK(U, Y, m) � SLK(U, Y, m)|U = SLK(U)

and

SLK(U, Y, m) � SLK(U, Y, m)|Y = SLK(Y ) .
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(3.11) Theorem. Let K be a field and U a K-space of finite dimension
at least 3. Then SLK(U, Y, m) is quasisimple if and only if m is nondegenerate.
In this case SLK(U, Y, m) = GLK(U, Y, m)′.

Proof. This follows from [42, Th. 4.4].

If σ is an anti-isomorphism of K and g ∈ GLK(V ), then we define an
associated gσ ∈ GLK(V σ) acting on the left:

gσ.v = v.g or, equivalently, v.gσ−1
= g.v .

For a basis { ei | i ∈ I } of V , if we have ei.g =
∑

j∈I gijej then gσ.ei =∑
j∈I ej .g

σ
ij ; so the matrix representing gσ in this basis is the transpose-σ-

conjugate of that representing g. In the special case of a field K and the
identity anti-isomorphism σ = 1, the element g1 acts on the transpose space
V 1 as the transpose of g. When g ∈ GLK(V ) acts on V on the left via trans-
poses, we have [g1, V 1] = [V, g]; so we write [g, V ] = [V, g]. We further this by
setting [A, V ] = [V, A] for all A ⊆ GLK(V ) when K is a field.

An isometry of the σ-sesquilinear form f : V × V −→ K is a g ∈ GLK(V )
with

f(u, v) = f(ug, vg) ,

for all u, v ∈ V . In terms of the associated pairing m : V ×V σ −→ K, we have

m(u, v) = f(u, v) = f(ug, vg) = m(ug, gσv).

Therefore g is an isometry of f if and only if (g, gσ) ∈ GLK(V, V σ, m).
For finite dimensional V and nondegenerate m, we can identify V σ with

V ∗, in which case (g, g−1) ∈ GLK(V, V σ, m). By Proposition 3.8(1) we con-
clude in this case that g−1 = gσ. We have recovered the familiar matrix identity
ggσ = 1.

An isometry of the quadratic form q : V −→ K is a g ∈ GLK(V ) with

q(v) = q(vg) ,

for all v ∈ V . Isometries of q are also isometries of the associated orthogonal
form b.

The full isometry group of a form f of type Cl ∈ {Sp,GU,GO} on the
K-space V is written ClK(V, f). The corresponding finitary isometry group
is then FClK(V, f) = FGLK(V ) ∩ ClK(V, f). When K is a field we have
FSpK(V, f) ≤ FSLK(V ). We set FSUK(V, f) = FSLK(V ) ∩ GUK(V, f) and
FΩK(V, f) = FGOK(V, f)′ (often proper in FSLK(V ) ∩ GOK(V, f); see [42,
11.44, 11.51]). As usual, when V has finite dimension over the field K we
write SUK(V, f) in place of FSUK(V, f) and ΩK(V, f) in place of FΩK(V, f).
The groups ClK(V, f) for Cl ∈ {GL,SL,Sp,GU,SU,GO,Ω} are the classical
groups.



466 J. I. HALL

Another common piece of notation for the finite classical groups is Cln(q)
for ClFq

(Fn
q ) (so, for instance, SLn(q) = SLFq

(Fn
q ) ). This notation presupposes

a nondegenerate or nonsingular form. If Cl /∈ {GO,Ω}, then a nondegenerate
form of type Cl on Fn

q is essentially unique, and the isometry group is uniquely
determined up to isomorphism by the parameters Cl, n, q. If Cl ∈ {GO,Ω}
then there are at most two essentially distinct nonsingular quadratic forms on
Fn

q , so there are at most two distinct isometry groups. (See [42, pp. 138-9] for
a precise discussion.)

One often writes PClK(V, f) for the group induced by ClK(V, f) on the
projective space PV . For nondegenerate forms the kernel will consist of scalars.
The finite groups PCln(q) are typically the simple quotients of the quasisimple
groups Cln(q). (See Theorems 3.11 and 3.13.) Nevertheless, the projective
groups appear rarely in the present work, because a nonidentity scalar acting
on an infinite dimensional space is not a finitary transformation.

Let f be a classical σ-sesquilinear form of type Cl ∈ {Sp,GU,SU}. We
have seen above that g ∈ ClK(V, f) if and only if (g, gσ) ∈ GLK(V, V σ, f). We
set

ClK(V, V σ, f) = { (g, gσ) | g ∈ ClK(V, f) } ≤ GLK(V, V σ, f) .

The corresponding finitary group is

FClK(V, V σ, f) = { (g, gσ) | g ∈ FClK(V, f) } ≤ FGLK(V, V σ, f) .

Similarly for the quadratic form f on the K-space V over the field K and
Cl ∈ {GO,Ω}, we set

ClK(V, V 1, f) = { (g, g1) | g ∈ ClK(V, f) } ≤ GLK(V, V 1, b)

and

FClK(V, V 1, f) = { (g, g1) | g ∈ FClK(V, f) } ≤ FGLK(V, V 1, b) ,

where b is the orthogonal form associated with the quadratic form f . In all
cases we have ClK(V, f) = ClK(V, V σ, f)|V and FClK(V, f) = FClK(V, V σ, f)|V .
(Compare Corollary 3.9.) The various groups ClK(V, W, f) (including SL and
GL) are the classical isometry groups. We sometimes blur the distinction be-
tween a classical isometry group and the corresponding classical group.

If G is a subgroup of ClK(V, W, f) or the corresponding classical group,
then we say that f is a G-invariant form of type Cl.

(3.12) Proposition. (1) Assume V is a vector space over the perfect
field K in characteristic 2 and that the quadratic form q is degenerate but
nonsingular on finite dimensional V = Kn. Then n = 2m + 1 is odd, and
R = Rad(V, b) has dimension 1. The associated form b is symplectic and
induces a nondegenerate symplectic form b̃ on Ṽ = V/R. Furthermore

ΩK(V, q) � SpK(Ṽ , b̃) .
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(2) For K a finite field of characteristic 2 and a nondegenerate symplectic
form s on Ṽ = K2m, there is a nonsingular quadratic form q on V = K2m+1

with R = Rad(V, b) of dimension 1, V/R = Ṽ , and s = b̃. Furthermore

SpK(Ṽ , s) � ΩK(V, q) .

Proof. See Taylor [42, Th. 11.9].

Therefore the isometry group of a nondegenerate symplectic form over a
finite field of characteristic 2 can be thought of as the isometry group of a
degenerate, nonsingular quadratic form over the same field.

(3.13) Theorem. Let V have finite dimension at least 6 over the finite
field K. Then SpK(V, s), SUK(V, u), and ΩK(V, q) (respectively) are quasisim-
ple if and only if s and u are nondegenerate and q is nonsingular (respectively).

Proof. See Taylor [42, Ths. 8.8, 10.23, 11.48].

(3.14) Proposition.Let Cl ∈ {Gl,SL,Sp,GU,SU,GO,Ω}, and let m :
V × W −→ K be a nondegenerate form of type Cl. The group FClK(V, W, m)
has a subgroup cover consisting of those subgroups

GU,Y � ClK(U, Y, m|U×Y )

with U finite dimensional in V , Y finite dimensional in W , and m|U×Y non-
degenerate. Here the element (g, h) of GU,Y corresponding to the element
(g0, h0) ∈ ClK(U, Y, m|U×Y ) acts on V = U ⊕ ⊥Y via g|U = g0 and ⊥Y.(g − 1)
= 0 and acts on W = Y ⊕ U⊥ via h|Y = h0 and (h − 1).U⊥ = 0.

If W = V σ for m a nondegenerate form of type Cl (�= SL,GL) on V with
respect to σ, then this remains true with Y = Uσ additionally.

Proof. The subgroups GU,Y are certainly in FClK(V, W, m) and are di-
rected by containment. Each (g, h) ∈ FClK(V, W, m) is in some GU,Y by
Lemma 3.5 with U0 = V (g − 1) and Y0 = (h − 1)W . If we have a quadratic
or classical σ-sesquilinear form on V , we instead use Lemma 3.6 with U0 =
V (g − 1).

(3.15) Theorem. For V and W of dimension at least 6 over the locally fi-
nite field K and nondegenerate (or nonsingular) f of type Cl ∈ {SL,Sp,SU,Ω},
the finitary group FClK(V, W, f) is locally finite and quasisimple. Indeed if V

and W are infinite dimensional, then FClK(V, W, f) is simple and is not linear
in finite dimension.

Proof. First consider the finite dimensional case. By Proposition 3.12, the
result for nonsingular f follows from the nondegenerate case.

Let S be a finite subset of ClK(V, f) � ClK(V, W, f) = FClK(V, W, f).
Choose a basis B = { ei | i ∈ I } for V . Let the set S′ consist of all the f(ei, ej)
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(or f(ei) and f(ei + ej)), for i, j ∈ I, and all entries of the |S| matrices that
describe the action of members of S on B. Then S′ is a finite subset of K

and so lies in a finite subfield KS of K on which the associated automorphism
is nontrivial in the case Cl = SU. Let VS be the KS-span of B. Then VS

is a KS〈S〉-submodule of V = K ⊗KS
VS . Therefore S ⊆ ClKS

(VS , f |VS
), a

finite quasisimple subgroup of ClK(V, f) by Theorems 3.11 and 3.13. As this
was true for any finite subset S, we have proved that ClK(V, f) has a finite
quasisimple subgroup cover. As the cover is finite, ClK(V, f) is locally finite.
Since the cover is quasisimple, ClK(V, f) is quasisimple by Lemma 2.1.

Now we consider the case of infinite dimensional V and W . Again the
result for nonsingular f follows from the nondegenerate case and so we assume
f to be nondegenerate.

By Proposition 3.14 and the finite dimensional case, FClK(V, W, f) has a
locally finite, quasisimple subgroup cover. Therefore by Lemma 2.1, G itself is
locally finite and quasisimple. Central elements are scalar by Schur’s lemma
and Proposition 3.14, but the identity is the only finitary scalar on an infinite
dimensional space. Therefore quasisimple FClK(V, W, f) is simple. By Propo-
sition 3.14, FClK(V, W, f) has alternating sections of arbitrarily large degree.
Therefore by Proposition 3.1 it is not linear of any finite degree.

3.4. �-root elements. The finitary symmetric group is generated by its
2-cycles, and the alternating group is essentially defined as the group generated
by all 3-cycles. The classical groups also have special generating elements of
small degree called root elements—the transvections (of degree 1) and the
orthogonal Siegel elements (of degree 2).

By Proposition 3.8(2), the element t = (g, h) of FClK(V, W, f) has

dimK V (g − 1) = dimK (h − 1)W = degV ×W t = � ,

say. In this case we call t an �-root element provided that the restriction of
f to the commutator of t is trivial. That is, (V (g − 1), (h − 1)W ) is totally
isotropic when f is not a quadratic form and V (g− 1) is totally singular when
f is a quadratic form. The identity is the only 0-root element.

(3.16) Lemma. Let t ∈ FClK(V, W, f) with degV ×W t = �.

(1) Assume that f is nondegenerate and that f is not a quadratic form
when charK = 2. Then t is an �-root element if and only if (t−1)2 = 0. (That
is, V (g − 1)2 = 0 and (h − 1)2W = 0.)

(2) Assume that f is a nonsingular quadratic form. Then t is an �-root
element if and only if (t− 1)2 = 0 and v ∈ v⊥(t− 1) for all v ∈ V (t− 1) if and
only if (t − 1)2 = 0 and v ∈ v⊥(t − 1) for a spanning set of v ∈ V (t − 1).

(3) If t is an �-root element, then t ∈ FSLK(V, W, f).
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Proof. [V, t] is the image of t − 1 and CV (t) is the kernel of t − 1, so (1)
follows directly from Lemma 3.7.

For (2), Lemma 3.7 still applies to say that V (t− 1) is totally isotropic if
and only if V (t − 1)2 ≤ V ⊥, the only singular vector of this radical being 0.
Let b be the orthogonal form associated with f . For v = x(t − 1), we have

f(v) = f(xt − x)

= f(xt) + f(−x) + b(xt,−x)

= f(x) + f(−x) + b(x + v,−x)

= f(x) + f(−x) + b(x,−x) + b(v,−x)

= 0 + b(v,−x) = b(v,−x) .

Thus v ∈ V (t − 1) is singular if and only if v ∈ v⊥(t − 1). As the singular
vectors of the totally isotropic V (t−1) form a K-subspace, we need only check
a spanning set to see if V (t − 1) is totally singular. This completes (2).

(3) holds as (t − 1)2 = 0.

Given an �-root element t, its associated �-root subgroup is the subgroup
consisting of all elements t0 with V (t − 1) ≥ V (t0 − 1) and (t − 1)W ≥
(t0−1)W . (All such t0 will themselves be �-root elements for possibly smaller �.)
A ClK(V, W, f) conjugate of an �-root element is an �-root element, and a
ClK(V, W, f) conjugate of an �-root subgroup is an �-root subgroup.

We are interested in the cases � = 1 or 2.
An element t ∈ GLK(V ) with degV t = 1 and (t−1)2 = 0 is a transvection.

Every transvection t has the form t(v, λ), with action on x ∈ V given by

x.t(v, λ) = x + xλ.v ,

for some nonzero v ∈ V and λ ∈ V ∗ with vλ = 0. The 1-space 〈v〉 = Kv ≤ V is
called the center of t(λ, v) while the 1-space 〈λ〉 ≤ V ∗ is its axis. A transvection
on V also is a transvection on V ∗, the action on V ∗ given by

t(v, λ).µ = µ + λ.vµ .

Thus the transvections of GLK(V ) are exactly those elements giving 1-root
elements of GLK(V, V ∗, mcan).

(3.17) Theorem. Let K be a field.

(1) Let m : V ×W −→ K be a nondegenerate pairing. The 1-root elements
of SLK(V, W, m) are the transvections t(v, w), which are given by

x.t(v, w) = x + m(x, w)v, for x ∈ V,

and

t(v, w).y = y + w m(v, y), for y ∈ W,
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for any nonzero v ∈ V and w ∈ W with m(v, w) = 0. The 1-root subgroup
containing the transvection t(v, w) is Tv,w = { t(bv, w) | b ∈ K } � (K, +).

(2) Let s be a nondegenerate symplectic form on the space V over K.

(a) The transvections of SpK(V, s) are the 1-root elements of SpK(V, s).

(b) The 1-root elements of SpK(V, s) are the symplectic transvections
t(av, v), which are given by

x.t(av, v) = x + s(x, v).av ,

for any nonzero v ∈ V and nonzero a ∈ K. The 1-root subgroup containing
the symplectic transvection t(av, v) is Tv,v = { t(bv, v) | b ∈ K } � (K, +).

(3) Let u be a nondegenerate σ-sesquilinear unitary form on the space V

over K.

(a) The transvections of SUK(V, u) are the 1-root elements of SUK(V, u).

(b) The 1-root elements of SUK(V, u) are the unitary transvections t(av, v),
which are given by

x.t(av, v) = x + u(x, v).av ,

for any nonzero v ∈ V with u(v, v) = 0 and any nonzero a from the subgroup
Kσ = { c ∈ K | c + cσ = 0 }. The 1-root subgroup containing the unitary
transvection t(av, v) is Tv,v = { t(bv, v) | b ∈ Kσ } � (Kσ,+).

(4) Let q be a nonsingular quadratic form on the space V over K with
associated orthogonal form b.

(a) ΩK(V, q) contains no transvections.

(b) The 2-root elements of ΩK(V, q) are the Siegel elements, which are
given by

x.r(v, w) = x + b(x, v)w − b(x, w)v ,

for v, w ∈ V with U = 〈v, w〉 any totally singular 2-space. The 2-root subgroup
containing the Siegel element r(v, w) is RU = { r(av, w) | a ∈ K } � (K, +).

Proof. The structure of the �-root elements follows from relatively easy
calculations. The corresponding �-root subgroups are then apparent. For (4a),
any transvections of GOK(V, q) are not in the derived group ΩK(V, q); see [42,
Th. 11.43].

Note that for consistency we set

t(v, 0) = 1 = t(0, w) and r(v, 0) = 1 = r(0, w) .

(3.18) Lemma. Let K be a field and Tv,w a transvection subgroup of the
group SLK(V, W, f).
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(1) If 1 �= T ≤ Tv′,w′ with f(v, w′) �= 0 �= f(v′, w), then

〈T, Tv,w〉 = SLK(〈v, v′〉, 〈w, w′〉, f |〈v,v′〉×〈w,w′〉) � SL2(K) .

(2) If further x ∈ W with f(v, x) = 0 = f(v′, x), then Tv′,w′ and Tv′,w′+x

are conjugate transvection subgroups of 〈T, Tv,w, Tv,w+x〉 � K2 : SL2(K), where
K2 is a natural module for SL2(K).

Proof. This is well-known and an elementary calculation.

Let V be a K-space and W a subspace of V ∗. The groups

TK(W, V ) = 〈t(v, λ) | v ∈ V, λ ∈ W, v.λ = 0〉 ≤ GLK(V )

were introduced in [7]. By Proposition 3.14 we have

(3.19) Proposition. Let K be a field. For W ≤ V ∗ with m = mcan|V ×W

nondegenerate, we have TK(W, V ) = FSLK(V, W, m)|V � FSLK(V, W, m).

4. Representations of finite groups

4.1. Unique nontrivial composition factors.

(4.1) Proposition (Meierfrankenfeld [15, 4.13]). Let finite B = Op(B)
act on the finite dimensional F -vector space U in characteristic p with a unique
nontrivial composition factor. Assume also that B = B0Op(B) for B0 ≤ B

implies B = B0. Then [B, Op(B)] ≤ CB(U).

Proof. We proceed by induction on dimF U . Set Q = [B, Op(B)].
First assume that [U, Q] is not trivial as an FB-module. Then since

B = Op(B), the unique nontrivial composition factor is in [U, Q] = [U, B]. As
Q itself is unipotent, we also have [U, Q] < U .

Let Y be a B-invariant hyperplane of U that contains [U, Q] = [U, B]. By
induction we have Y ≤ CU (Q). In particular, the action of Q on U is quadratic:
[U, Q, Q] = 0. Choose x ∈ U \ Y , so that U = Fx ⊕ Y and [U, Q] = [Fx, Q].
By quadratic action the set W = {[x, q] | q ∈ Q} is an FpQ-submodule of U .
Indeed it is an FpB-submodule since [U, B] ≤ CU (Q), so that, for q ∈ Q and
b ∈ B,

[x, q]b = [xb, qb] = [x + [x, b], qb] = [x, qb] + [[x, b], qb] = [x, qb] ∈ W .

Consider now the FB-module Ū = U/CU (B). The image of [U, B] is an
irreducible FB-submodule T̄ with T̄ = FW̄ because [U, B] = [Fx, Q]. As
an FpB-module (of possibly infinite dimension), T̄ has a nonzero irreducible
submodule W̄0 within finite W̄ . Thus T̄ = FW̄ = FW̄0 is a sum of FpB-
irreducibles and so is completely reducible. Therefore W̄ is complemented in
T̄ ; there is an FpB-submodule Z̄ of T̄ with T̄ = W̄ ⊕ Z̄.
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For an arbitrary b ∈ B, we have

x̄b = x̄ + [x̄, b] = x̄ + (w̄ + z̄) = x̄ + [x̄, q] + z̄ = x̄q + z̄ ,

where z̄ is in Z̄ and w̄ is in W̄ , so that w̄ = [x̄, q], for some q ∈ Q. Therefore
(x̄ + Z̄)b = (x̄ + Z̄)q, and generally (x̄ + Z̄)B = (x̄ + Z̄)Q . By a Frattini
argument ([1, (6.3)]) B = QNB(x̄ + Z̄), so by assumption B = NB(x̄ + Z̄).
That is, for each b ∈ B, we have [x̄, b] ∈ Z̄. In particular for each q ∈ Q

this gives [x̄, q] ∈ Z̄, but already [x̄, q] ∈ W̄ . Therefore [x̄, q] ∈ W̄ ∩ Z̄ = 0̄.
We conclude that [x̄, Q] = 0̄, which is not true since W̄ is nonzero. The
contradiction shows that this case cannot occur, and therefore [U, Q] must be
trivial as an FB-module.

Dually, U/CU (Q) is a trivial B-module. Therefore

[U, Q, B] = [B, U, Q] = 0 ,

whence [Q, B, U ] = 0 by the Three Subgroups Lemma [1, (8.7)]. As B =
Op(B), we have [Q, B] = [Op(B), B, B] = [Op(B), B] = Q. Therefore 0 =
[Q, B, U ] = [Q, U ]; that is, Q is trivial on U , as required.

4.2. Representation of finite alternating groups. In the next result, the
function c(d) is a fixed nondecreasing function, defined on the positive integers.
While it is possible to give a precise function, this is not necessary for us. The
existence of such a function is good enough.

(4.2) Theorem (Jordan’s Theorem [21]). Let finite H ≤ Sym(Ω) be
primitive on Ω. There is a nondecreasing function c(d) such that, if H con-
tains a nontrivial element of degree at most d on Ω with |Ω| > c(d), then H is
Alt(Ω) or Sym(Ω).

This can be found in [10, Th. 3.3D] with a short and elementary proof
that uses a function c(d) exponential in d log d. A more sophisticated but
still elementary argument of Babai [2, Th. 0.3] shows that Jordan’s Theorem
remains valid with c(d) = 4d2 (see [10, Ths. 5.3A, 5.4A]).

(4.3) Proposition. Let finite H be contained in GLF (U) with H irre-
ducible but not primitive on finite dimensional U . Let Ω = {Uk | 1 ≤ k ≤ m }
be the blocks of a system of imprimitivity that maximizes dimF Uk = e. With
the function c(d) of Theorem 4.2, we have:

If H is generated by a set D of elements of degree at most d on U with
dimF U > d c(2d), then in its action on Ω the group H induces Alt(Ω) or
Sym(Ω) with |Ω| ≥ (dimF U)/d. The kernel of this action is a subgroup of∏

Ω GLe(F ). Each element g ∈ D permutes Ω with degree at most �2d/e�. In
particular e ≤ d.
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Proof. See [15, Prop. 3.1], [36, Th. 9.1], [37].
The group H̄ induced on Ω is transitive and generated by the elements

of D̄. As the Ui are maximal blocks, this action is actually primitive. For
g ∈ D, if Ug

i �= Ui then [Ui, g] = Ui(g − 1) has dimension e ≤ d. Therefore
d ≥ ed̄/2, where d̄ is the degree of ḡ on Ω. Hence d̄ ≤ �2d/e� while |Ω| =
(dimF U)/e ≥ (dimF U)/d (as claimed).

We have

|Ω| ≥ (dimF U)/d > d c(2d)/d = c(2d) ≥ c(�2d/e�) ≥ c(d̄) ;

so by Jordan’s Theorem 4.2, H̄ is Alt(Ω), or Sym(Ω) as desired. The kernel of
the action is contained in

∏
k GLF (Uk), as described.

(4.4) Proposition. Let G � Alt(Ω) for finite |Ω| ≥ 5. If V is a natural
KG-module and E is a subfield of K, then within V there is a natural EG-
submodule Y with V = K ⊗E Y . As an EG-module, V is completely reducible
with all irreducible submodules equal to c ⊗ Y , for some c ∈ K.

Proof. This is well-known. Matrices for the representation of G on its per-
mutation module KΩ all have entries 0 or 1. The module V is then isomorphic
to [KΩ, G]/[KΩ, G] ∩ K(1, 1, 1, . . . , 1). As the augmentation module [KΩ, G]
consists of those vectors with coefficient sum 0, the representing matrices all
have entries from the prime subfield. Thus natural modules are realized over
the prime subfield and are absolutely irreducible, and the rest follows.

4.3. Representation of finite classical groups. We present several results
about the uniform behavior of finite classical groups with sufficiently large
degree. The actual lower bound on the degrees (8, in fact) is not crucial, only
the fact that some such bound exists.

(4.5) Proposition. The Schur multiplier of the classical group Cln(pa),
for n > 8, has trivial p-part.

Proof. See [11, p. 302].

(4.6) Proposition. Let H be a finite perfect group with H/Op(H) �
Cln(pa) with n > 8. Furthermore, let H act faithfully on the finite dimensional
F -vector space U in characteristic p with a unique nontrivial composition fac-
tor. Then H splits over Op(H).

Proof. Let B be a minimal supplement to Op(H) in H. In particular
B is perfect and satisfies all the hypotheses of Proposition 4.1. Therefore B

intersects Op(H) only in a central p-subgroup. By Proposition 4.5, the Schur
multiplier of the classical group H/Op(H) in characteristic p has trivial p-part,
so this intersection is trivial. Therefore the extension is split by B.
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Let G be a nontrivial quotient of the quasisimple classical group Cln(q).
A natural module for G is the module Fn

q for its defining irreducible projective
representation or its dual module (or any twist of these modules via field
automorphisms). A nearly natural module is a natural module tensored up to
a (possibly) larger field.

If G = Sp2m(q) with q even, then an orthogonal module for G is the module
F2m+1

q on which G acts as the orthogonal group Ω2m+1(q) (or any twist via
field automorphisms). An orthogonal module for G is therefore a reducible
but indecomposable extension of a trivial module Fq by a natural symplectic
module for G; see Proposition 3.12. In this case, a nearly orthogonal module
is an orthogonal module again tensored up to a (possibly) larger field. (Note
that in this case, natural and nearly natural modules still have dimension 2m.)

A module for Cln(q) that is either nearly natural or nearly orthogonal
is nearly nonsingular. For a discussion of the structure of nearly nonsingular
modules, see Proposition 4.11 below.

The tranpose of a natural right G-module is a natural left G-module and
so forth.

(4.7) Proposition. Let C be a finite quasisimple classical group Cln(q)
with n > 6, and let U be an extension of a trivial FC-module Z by a nearly
natural FC-module Y . Then either

(1) U = Z ⊕ [U, C] with [U, C] nearly natural, or

(2) for n = 2m, C � Sp2m(q) with q even, Z ∩ [U, C] has dimension 1, and
[U, C] is a nearly orthogonal module for C � Ω2m+1(q).

In particular, [U, C] is nearly nonsingular.

Proof. The dual of a nearly natural module is also nearly natural, and
nearly orthogonal modules have the stated structure. Therefore the proposition
is equivalent to the cohomological statement that H1(C, Y ) � F ⊗H1(C, Fn

q ) is
0 but for the exceptional case (2) where it has dimension 1. As such, the result
is a compendium of results by many people and is reasonably well-known; see
[20], [23, Th. 2.14], and [28, §1].

(4.8) Theorem. Let S be a finite quasisimple classical group Cln(q) with
n > 8. If S ≤ GLF (U) with dimF U ≤ n, then U is a nearly nonsingular
module for S. In particular, nearly natural modules are absolutely irreducible.

Proof. For irreducible U , this is a reasonably well-known consequence of
Steinberg’s representation theory for Lie type groups in natural characteristic
[41]. In particular it is contained in [27, Th. 1.1]. The full result then follows
from Proposition 4.7.
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(4.9) Proposition. For H ≤ ClF (U, f) with either Cl ∈ {Sp,GU} and
f nondegenerate or Cl = GO and f nonsingular,

Rad([U, H], f |[U,H]) = [U, H] ∩ CU (H) .

Proof. By definition Rad([U, H], f |[U,H]) = [U, H]∩ [U, H]⊥, so this follows
directly from Lemma 3.7(1) except when (Cl, charF ) = (GO, 2). Now assume
we are in that case. From Lemma 3.7(1) we still get CU (H) ≤ CU/U⊥(H) =
[U, H]⊥, so it suffices to prove R = Rad([U, H], f |[U,H]) ≤ CU (H).

For u ∈ R ≤ R⊥ we also have u.h ∈ Rh = R for all h ∈ H. Therefore

f([u, h]) = f(u(h − 1))

= f(u.h) + f(−u) + b(u.h,−u)

= f(u) + f(u) + 0 = 0 ,

where b is the symplectic form associated with the quadratic form f .
By Lemma 3.7(2), [u, h] is in Rad(U, f), and by the previous paragraph it

is singular; so [u, h] ∈ SRad(U, f) = 0. Therefore u ∈ CU (h), as desired.

Motivated by this proposition, we define the radical of H in U as

RU (H) = [U, H] ∩ CU (H) ,

for H ≤ GLF (U).
We also want a version of the singular radical relative to subgroups H.

For H ≤ ClF (U, f) with Cl ∈ {Sp,GU} and f nondegenerate, we define

SU (H) = RU (H) = Rad([U, H], f |[U,H]) .

Similarly, for H ≤ GOF (U, f) and f nonsingular, we define

SU (H) = SRad([U, H], f |[U,H]) ,

of codimension at most 1 in RU (H) for perfect F . Finally, for a subgroup
H ≤ GLF (U+, U−, f) with f nondegenerate, set

SUε(H) = RUε(H) = Rad([U ε, H], f |[U+,H]×[U−,H]) ,

again by Lemma 3.7(1).
In all cases, we then set

U ε
H = [U ε, H]/SUε(H) ,

a section of U ε (= U) which contains all nontrivial H-composition factors of U ε.
For Cl �= GO the classical sesquilinear form f induces an H-invariant

nondegenerate form fH : U+
H×U−

H −→ F of the same type Cl as f . Similarly for
Cl = GO, the quadratic form f induces an H-invariant nonsingular quadratic
form fH : UH −→ F .
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(4.10) Proposition. Let finite quasisimple C = ClF (W+, W−, f), with
dimF W ε > 6, be a subgroup of the finite quasisimple group ClE(U+, U−, e) of
the same classical type Cl.

Let p = charE = charF . Assume that, for Q = 〈CQ〉 = Op(Q)C, there is
a unique nontrivial Q-composition factor in U ε and it is nearly natural for C.
Assume further that (Cl, p) �= (Sp, 2). Then

(1) [U ε, Q] = SUε(Q) ⊕ [U ε, C] with [U ε, C] nearly nonsingular for C.

(2) Q is quasisimple if and only if SU+(Q) = SU−(Q) = 0.

(3) If (Cl, p) = (Ω, 2) with C � Sp(F 2m, b) � Ω(F 2m+1, q), then [U ε, C]
is nearly orthogonal for C. Furthermore, the restriction of e to [U ε, C] is
nonsingular but degenerate.

Proof. First consider (3). By Proposition 4.7, either [U ε, C] is of di-
mension 2m + 1 and is nearly orthogonal for C � Ω(F 2m+1, q) or it is of
dimension 2m and is nearly natural for C � Sp(F 2m, b). The second case can-
not happen by Theorem 3.17(4a). In the first case, [U ε, C] is indecomposable
with a trivial submodule Z of dimension 1 and the quotient [U ε, C]/Z is irre-
ducible and nearly natural (symplectic) for C. The subspace [U ε, C] cannot
be totally isotropic for e by Lemma 3.7 and Proposition 4.9, so it has radical
Z = [U ε, C]∩ [U ε, C]⊥ = RUε(C). If Z were singular for e, then e would induce
a nondegenerate C-invariant quadratic form on the quotient [U ε, C]/Z. This
would again contradict Theorem 3.17(4a).

We next consider (1). Note that [U ε, Q, Op(Q)] ≤ SUε(Q). Let Zε be a
maximal proper EQ-submodule of [U ε, Q]. As Q = 〈CQ〉 is perfect, [U ε, Q]/Zε

is nearly natural and

Zε = C[Uε,Q](Q) = [U ε, Q] ∩ CU (Q) = RUε(Q) .

Proposition 4.7 and (3) then give (1). Together with Theorems 3.11 and 3.13,
this gives (2).

(4.11) Proposition. Let finite quasisimple Q � ClF (W+, W−, f), with
dimF W ε > 6, be a subgroup of the group ClE(U+, U−, e) of the same classical
type Cl over the field E. If Cl �= SL, let σ be the automorphism of E for which
U ε = (U−ε)σ. Assume that each U ε is a nearly nonsingular module for Q.

The field E has a unique subfield K isomorphic to F . Let τ be the re-
striction of σ to K. Let V ε be a minimal nontrivial KQ-submodule of U ε

(with V ε = (V −ε)τ if Cl �= SL). Then there is a constant κ = κσ ∈ E with
Q = ClK(V +, V −, κ e|V ±). Here κ e|V ± is the appropriate restriction e|V +×V −

or e|V + = e|V − multiplied by the scalar κ. The form κ e|V ± is of type Cl with
respect to τ and is nondegenerate on V + × V − if Cl �= Ω and nonsingular on
V ε = (V −ε)1 if Cl = Ω.
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The K-spaces V ε are uniquely determined up to multiplication by scalars
from E. The constant κ with Q = ClK(V +, V −, κ e|V ±) is then uniquely de-
termined up to multiplication by an element of K fixed by τ .

Proof. As F is finite and U ε is a nearly nonsingular EQ-module, E indeed
has a unique subfield K isomorphic to F and K is invariant under σ.

We first discuss the situation where U ε is nearly natural for Q. Then
U ε � E ⊗K V ε, where V ε is an irreducible, natural KQ-module. (This is an
abuse of notation. In fact U+ � E ⊗K V + and U− � V − ⊗K E.) Thus U ε is
completely reducible as a KQ-module, and every irreducible KQ-submodule
(and quotient) is isomorphic to V ε. As V ε is an absolutely irreducible KQ-
module (by Theorem 4.8), U ε is an absolutely irreducible EQ-module. Thus
by Schur’s Lemma any two KQ-irreducible submodules of U ε differ by a scalar
of E.

Assume that Cl = SL. Let V ε be an irreducible KQ-submodule of U ε,
and let t ∈ Q be a transvection on V + with center Kx. Then t is also a
transvection on V − with center, say, x0K. As t remains a transvection on U ε,
it is a 1-root element of SLE(U+, U−, e) by Theorem 3.17(1). In particular
e(x, x0) = 0.

The Q-stabilizer of Kx has two orbits on the 1-spaces of V −. For zK in
the orbit of x0K, we have e(x, z) = 0. As x /∈ ⊥U−, we have e(x, z) �= 0 when
zK is from the other orbit. Choose such a z, and set κ = e(x, z)−1.

We have κ e(x, x0) = 0 and κ e(x, z) = 1; hence κ e(x, v) ∈ K for all v ∈
V −. As Q is transitive on the 1-spaces of V +, we conclude that κ e(u, v) ∈ K for
all (u, v) ∈ V +×V −. Therefore κ e|V ± : V + × V − −→ K is a Q-invariant pair-
ing that is nondegenerate, since κ e(x, y) = 1 and Q is irreducible on V ε. After
comparing orders, we have that quasisimple Q is equal to SLK(V +, V −, κ e|V ±).
By Lemma 3.3, the map v �→ κ e(·, v) gives a KQ-isomorphism of V − and
(V +)∗. Therefore by Schur’s Lemma, given V ε, a constant κ affording this
equality is uniquely determined up to multiplication by a scalar from K.

Next assume that Cl �= SL with the form e of type Cl being nondegenerate
on U (= U+ = (U−)σ), a nearly natural module for Q. Let V = V + be an
irreducible KQ-submodule of U and put V − = (V +)τ = V τ . Let b be the
σ-sesquilinear form on U associated with e (equal to e if Cl �= Ω).

As Q � ClF (W+, W−, f), there is a nondegenerate form fK on V that is
of type Cl—quadratic or classical ρ-sesquilinear for some automorphism ρ of
K—with Q = ClK(V, V ρ, fK). Let bK = fK except if Cl = Ω where bK will be
the orthogonal form associated with the quadratic form fK .

By Lemma 3.16 the �-root elements of Q = ClK(V, V ρ, fK) are also
�-root elements of ClE(U+, U−, e). Considering the case � = 1, 2 and The-
orem 3.17, we learn that V is the K-span of its vectors that are isotropic (and
even singular when Cl = Ω) for both e and fK . Let Kx and Ky be two
isotropic (even singular) 1-spaces in V , chosen so that b(x, y) �= 0. We also
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have bK(x, y) �= 0 (again, by consideration of �-root elements for � = 1, 2). The
K-subspace H = Kx ⊕ Ky is hyperbolic for fK .

Let b′ : U × U −→ E be given by b′(u, v) = b(x, y)−1b(u, v), so that b′ is a
nondegenerate σ-sesquilinear form on U but not necessarily classical. Thus

b′(x, x) = b′(y, y) = 0 and b′(x, y) = b′(y, x) = 1 ,

and the range of b′ on H is in K. As Q is transitive on 2-spaces that are
hyperbolic for fK , the range of b′ on all V is in K. That is, b′|V ×V = b′K is a
nondegenerate τ -sesquilinear form on the K-space V .

By Lemma 3.3 the map v �→ bK(·, v) gives a KQ-isomorphism of V ρ and
V ∗, while v �→ b′K(·, v) gives a KQ-isomorphism of V τ and V ∗. We conclude
that ρ = τ (by [41] or direct calculation). As Q is absolutely irreducible on
V ∗ (by Theorem 4.8), the forms bK and b′K differ by a scalar. That is, for all
u, v ∈ V ,

bK(u, v) = kb′K(u, v) = κ b(u, v)

for some k ∈ K and κ = kb(x, y)−1 ∈ E. If σ = 1, then certainly κσ = κ.
When σ �= 1, we can find v ∈ V with b(v, v) �= 0. Then

κ = bK(v, v)b(v, v)−1 = bK(v, v)τ (b(v, v)σ)−1

= (bK(v, v)b(v, v)−1)σ = κσ .

If Cl �=Ω then fK =bK and e|V ± =b|V ± , so that Q ≤ ClK(V +, V −, κ e|V ±)
with κ = κσ. Equality follows by order considerations. Schur’s Lemma again
guarantees that κ is unique up to multiplication by a member of K (necessarily
fixed by τ as we have classical sesquilinear forms).

If Cl = Ω then we know that singular vectors for fK span V and U and
are also singular for e and κ e|V ± . Additionally, we have from above that
bK = κ b|V ± , with κ unique up to a scalar from K. Any quadratic form is
uniquely determined by its values at a basis and its associated orthogonal
form. Therefore fK = κ e|V ± and Q ≤ ClK(V +, V −, κ e|V ±) with equality
following from order considerations.

This concludes discussion of nearly natural U ε. The remaining possibility
is that U(= U+ = (U−)1) is nearly orthogonal for Q with (Cl, charK) = (Ω, 2),
which we now assume. The space Z = Rad(U, e) is nonsingular of dimension 1
by Proposition 4.10(3). As before, let b be the symplectic form on U associated
with e.

The previous remarks apply to Ũ = U/Z (with Cl = Sp). In particular, a
minimal nontrivial KQ-submodule V of U must map to an irreducible submod-
ule Ṽ of Ũ . Let V0 be the KQ-submodule of U that is the full preimage of Ṽ .
By Proposition 4.7 the K-space V = [V0, Q] is either a natural KQ-module or
an orthogonal KQ-module. In the first case Y = EV (� E ⊗K V ) would be a
completely reducible EQ-submodule of U with all composition factors natural
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and Ỹ = Ũ . That would go against the indecomposability of U . Therefore V

is an orthogonal module for Q. Two such differ by a scalar from E, since the
centralizer of Q in EndE(U) still consists of the scalars.

By earlier remarks Q = SpK(Ṽ , Ṽ 1, κ b̃|Ṽ ±), where b̃ is the symplectic form
induced on Ũ by b and the constant κ ∈ E is uniquely determined up to multi-
plication by a member of K. The map κ b|V ± is then a Q-invariant symplectic
form on the K-space V with radical Z ∩ V of K-dimension 1 (nonsingular
for e). As before, consideration of 2-root elements shows that V is the K-span
of its vectors that are singular for e. Therefore κ e|V ± is a nonsingular quadratic
form on V with associated symplectic form κ b|V ± , and Q ≤ ΩK(V, V 1, κ e|V ±).
Comparing orders again, we find equality and so complete the proof of Propo-
sition 4.11.

(4.12) Proposition. (1) Let H be an irreducible subgroup of the finite
classical group ClK(V ) with Cl ∈ {SL,Sp,SU}. Assume that H contains a
1-root (transvection) subgroup and a subgroup C � ClF (U) with F ≤ K and
[V, C] a nearly natural module for C with dimF U + 2 ≥ dimK V ≥ 7. Then
H = ClK(V ).

(2) Let H be a subgroup of the finite orthogonal group ΩK(V, f) for f

nonsingular with H irreducible on V/Rad(V, f). Assume that H contains a
2-root (Siegel) subgroup and a quasisimple subgroup C � ΩF (U, fU ) with
F ≤ K and [V, C] a nearly nonsingular module for C with [V, C] ≥ Rad(V, f)
and 2 dimF U > dimK V > dimF U + 8. Then H = ΩK(V, f).

Proof. This can be proved by direct calculation, but it is immediate from
results on groups generated by transvections and long root elements; see in
particular [22], [29]. It could also be deduced from Corollary 5.4 below.

5. A classification result

In this section we present the weak version of the classification of finite
simple groups (CFSG) used in proving our main theorem, Theorem 1.1. Indeed
the result can be split into two parts, Corollary 5.3 and Corollary 5.4, both of
which are highly geometric in flavor. Corollary 5.4 is certainly open to proof
without CFSG, so that a classification-free proof of Corollary 5.3 should render
the results of this paper independent of CFSG.

We begin with an abbreviated version of [16, Th. 4]:

(5.1) Theorem (Hall, Liebeck, Seitz [16]). Let F be an algebraically
closed field of characteristic p (possibly p = 0), and let U be a vector space
of finite dimension n > 1 over F . Suppose that H is a finite primitive sub-
group of GLF (U) and is generated by elements of degree less than

√
n/12. Then

one of the following holds:
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(1) H is Alt(m) or Sym(m), and U is a natural FH-module; or

(2) F ∗(H) is a classical group over a finite field of characteristic p with
natural module of dimension n.

Here F ∗(H) is the self-centralizing characteristic subgroup of H generated
by all subnormal nilpotent or quasisimple subgroups [1]. The proof of the
theorem in [16] makes use of CFSG.

Guralnick and Saxl [12] have extended the theorem, in particular improv-
ing the bound

√
n/12 to

√
n/2 (still using CFSG).

The version of the theorem that we use is:

(5.2) Theorem. Let finite H be contained in GLF (U), for F algebraically
closed, with H primitive on finite dimensional U . There is a nondecreasing
function k(d) such that, if H is generated by elements of degree at most d on
U with dimF U > k(d), then either

(1) H is Alt(∆) or Sym(∆), and U is a natural module; or

(2) F ∗(H) is a quasisimple classical group in the same characteristic as F ,
and U is a nearly natural module for F ∗(H).

Proof. If we set k(d) = 144d2, then the theorem follows from Theorems
4.8 and 5.1.

A version of Theorem 5.2 for imprimitive groups appeared earlier as
Proposition 4.3. Its proof did not depend upon CFSG.

There is some virtue in splitting Theorem 5.2 into two parts.

(5.3) Corollary. Let finite H be contained in GLF (U), for F alge-
braically closed, with H primitive on finite dimensional U . There is a non-
decreasing function k(d) such that, if H is generated by elements of degree at
most d on U with dimF U > k(d), then H is generated by elements of degree
at most 2 on U .

(5.4) Corollary. Let finite H be contained in GLF (U), for F alge-
braically closed, with H primitive on finite dimensional U . There is a constant
k(2) such that, if H is generated by elements of degree at most 2 on U with
dimF U > k(2), then either :

(1) H is Alt(∆) or Sym(∆), and U is a natural module; or

(2) F ∗(H) is a quasisimple classical group in the same characteristic as
F , and U is a nearly natural module for F ∗(H).

The point here is that most (and perhaps all) of Corollary 5.4 has already
been proved without CFSG. See, for instance, [22], [29], [40].
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The results of Guralnick and Saxl [12] imply that Theorem 5.2 and Corol-
lary 5.3 hold with k(d) = 4d2 for d ≥ 3. Additionally they prove that Theorem
5.2 and Corollary 5.4 are valid with k(2) = 10 and that this is best possible.
Their work makes use of CFSG.

6. The division of cases in Theorem 1.1

We have now assembled everything needed to prove Theorem 1.1. The
converse is immediate from Theorems 3.2 and 3.15:

(6.1) Theorem. Each group in Theorem 1.1(2–6) is locally finite, simple,
and finitary but not linear in finite dimension.

To attack the direct part of Theorem 1.1, we let G be a locally finite
simple group that has a faithful representation as a finitary linear group in
characteristic p (possibly 0) but has no faithful characteristic p representation
as a linear group in finite dimension. In this section we show that G resembles
either an alternating group or a classical group in positive characteristic p.

Choose an arbitrary but fixed nonidentity element g of G and let D = gG.
Considering all faithful characteristic p representations ϕ : G −→ FGLF (X),
we let d be the minimum value of the degree dimF [X, ϕ(g)].

Let ϕ be one such minimizing representation. We identify G with its image
under ϕ, so that G ≤ FGLF (X) and d = dimF [X, g]. Let F̂ be an algebraic
closure of F .

Let O = { (Gi, Ni) | i ∈ I } be a Kegel cover of G. Passing to an abbrevi-
ation if necessary, we may assume that each Gi = 〈Gi ∩ D〉 with g ∈ Gi \ Ni

by Lemmas 2.4 and 2.6.

(6.2) Proposition. Let f be a constant. Let If be the set of all i ∈ I

for which

(a) Gi has a unique composition factor Xi in X in which g acts nontriv-
ially ;

(b) Xi is an absolutely irreducible Gi-module;

(c) dimF Xi > f ; and

(d) dimF [Xi, g] = d.

Then Of = { (Gi, Ni) | i ∈ If } is a Kegel cover for G.

Proof. We color O with three colors—Small-d, Small-X, and Big.
If Gi has at least two composition factors in X on which g is nontrivial,

give (Gi, Ni) color Small-d. Equally well give (Gi, Ni) color Small-d if Gi has
a unique composition factor Xi in X on which g acts, but Xi is not absolutely
irreducible or dimF [Xi, g] < d.



482 J. I. HALL

If Gi has a unique composition factor Xi in X on which g acts, Xi is ab-
solutely irreducible, and dimF [Xi, g] = d but dimF Xi ≤ f , then give (Gi, Ni)
color Small-X.

Finally, if Gi has a unique nontrivial composition factor Xi in X on which
g acts, Xi is absolutely irreducible, dimF [Xi, g] = d, and dimF Xi > f , then
(Gi, Ni) gets color Big.

We wish to show that those pairs colored Big form a Kegel cover, so that
by Lemma 2.4 we need only show that the other two color classes are not Kegel
covers.

If Small-X colors a cover, then by Mal’cev’s Theorem 2.10(1), G is linear
of degree at most f in characteristic p, against our overall assumption.

Now suppose that those pairs colored Small-d form a Kegel cover. For
each such pair (Gi, Ni), let Xi be a Gi-composition factor in X on which g acts
nontrivially. Let Wi be an irreducible F̂Gi-submodule of F̂ ⊗F Xi. Consider
the representation ϕi : Gi −→ GLF̂ (Wi).

If Xi is absolutely irreducible and the unique composition factor for Gi

on which g is nontrivial, then 0 < dimF̂ [Wi, ϕi(g)] = dimF [Xi, g] < d as we
are in color class Small-d. Otherwise Xi is not absolutely irreducible or is
absolutely irreducible but not the only FGi-composition factor in X on which g

acts nontrivially. In either case 0 < dimF [Wi, ϕi(g)] < d since dimF [X, g] = d

and Wi is not the only F̂Gi-factor in F̂ ⊗F X on which g acts nontrivially.
Therefore by Theorem 2.10(2), when we represent G on a characteristic p

ultraproduct W∞ of the Wi, we have 0 < dim [W∞, ϕ∞(g)] < d. As this degree
is nonzero and G is simple, the representation ϕ∞ is faithful. This contradicts
our choice of d as the minimum degree for g in any faithful characteristic p

finitary representation of G.

Choose an f > max(d c(2d), k(d), d2 +15d) (the functions c, k being those
of Theorem 4.2 and Theorem 5.2). We consider the Kegel cover Of . Write
If = Iprim ∪ Iimprim where i ∈ Iprim if X̂i = F̂ ⊗F Xi is primitive for Gi

and i ∈ Iimprim otherwise. By coloring (Lemma 2.4), at least one of Oprim =
{ (Gi, Ni) | i ∈ Iprim } or Oimprim = { (Gi, Ni) | i ∈ Iimprim } is a Kegel cover.

(6.3) Proposition. For each i ∈ Iprim, either

(1) Gi/ kerGi
(Xi) is Alt(∆i) or Sym(∆i) and Xi is a natural module; or

(2) F ∗(Gi/ kerGi
(Xi)) is a quasisimple classical group in characteristic p

(which thus is positive) and Xi is a nearly natural module for F ∗(Gi/ kerGi
(Xi)).

Proof. By Theorem 5.2 the induced group Gi/ kerGi
(Xi) = Gi/ kerGi

(X̂i)
is as in (1) or (2). Let Mi be Gi/ kerGi

(Xi) under (1) and F ∗(Gi/ kerGi
(Xi))

under (2). Theorem 5.2 also says that X̂i is, respectively, a natural or nearly
natural F̂Mi-module. We must still identify the FMi-module Xi.
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In case (1), by Proposition 4.4 the module Xi is natural for Gi/ kerGi
(Xi),

isomorphic to Alt(∆i) or Sym(∆i).
In case (2), let E be Fqi

where Mi = F ∗(Gi/ kerGi
(Xi)) � Clni

(qi). By
Theorem 4.8, the nearly natural F̂Mi-module X̂i is completely reducible as an
EMi-module and irreducible submodules differ only by scalar multiplication
by a member of F̂ . So we can choose Yi to be an irreducible natural EMi-
module within the submodule Xi. Then Xi = F ⊗E Yi is a nearly natural
FMi-module, as desired.

(6.4) Proposition. Suppose Oimprim is a Kegel cover, and choose
(G0, N0) in Oimprim. Let J be the set of all i ∈ Iimprim with G0 ≤ Gi and
G0 ∩ Ni = 1. Then Pimprim = { (Gj , Nj) | j ∈ J } is a Kegel cover. For each
j ∈ J , Gj/Nj � Alt(∆j) with g acting as a nontrivial permutation of degree at
most 2d on ∆j (and |∆j | > f/d).

Proof. By Corollary 2.5, Pimprim is a Kegel cover. We must identify the
Kegel quotients Gj/Nj for j ∈ J . Recall that kerGi

(Xi) = kerGi
(X̂i).

For i ∈ Iimprim the only Gi-composition factor in X on which g acts
nontrivially is Xi, so 〈gGi〉 ∩ ker(Xi) is unipotent. As g ∈ Gi \ Ni, simple
Gi/Ni is a composition factor of Gi/ kerGi

(Xi). By Proposition 4.3 the group
Gi, in its action on a maximal block system ∆i in X̂i, induces Alt(∆i) or
Sym(∆i) with kernel Bi inducing on Xi a subgroup of

∏
∆i

GLd(F̂ ) (as the
dimension e of a block is at most d). Furthermore, the degree of each member
of D ∩ Gi on ∆i is at most �2d/e� ≤ 2d and

|∆i| = (dimF Xi)/e > f/d ≥ d + 15 ≥ 16 .

We claim that, for each j ∈ J , we have g �∈ Bj . Assume that this is not
true for j. Then simple Gj/Nj is a section of GLd(F̂ ) containing a subgroup
G0 with G0/B0 � Alt(∆0), for |∆0| ≥ 16. By Proposition 3.1 this implies that
d ≥ |∆0| − 2. As |∆0| > f/d, we conclude that d2 + 2d > f , against our choice
of f . Thus for all j ∈ J we have g /∈ Bj , and g is nontrivial on ∆j .

Now Gj/Nj is a composition factor of Gj/Bj , which is itself isomorphic
to Sym(∆j) or Alt(∆j). Therefore Gj/Nj � Alt(∆j), completing the proof of
the proposition.

(6.5) Theorem. Let G be a locally finite simple group that has a faithful
characteristic p representation as a finitary linear group but has no faithful
characteristic p representation as a linear group in finite dimension. Take g

to be an arbitrary but fixed nontrivial element of G.
Then any Kegel cover O for G can be abbreviated to a quasisimple Kegel

cover K = { (Hi, Oi) | i ∈ I } such that one of two cases holds:

(1) (Alternating Case) There is an infinite set ∆ such that G ≤ Alt(∆).
There is a constant δ such that, for each i ∈ I, g ∈ Hi = 〈gG ∩Hi〉 and Hi/Oi
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is an alternating group Alt(∆i) with g acting nontrivially but having degree at
most δ in its action on ∆i. The set { |∆i| | i ∈ I } is unbounded.

(2) (Classical Case) There are a perfect field L of characteristic p > 0,
L-spaces Xε (for ε = ±), and a classical type Cl ∈ {SL,Sp,SU,Ω} (with
(Cl, p) �= (Sp, 2)) such that G ≤ FClL(X+, X−, f), where f is a nondegenerate
form of type Cl on X+×X− or a nonsingular quadratic form on Xε = (X−ε)1.
Each Oi is unipotent and each Hi is perfect with Hi/Oi � Clni

(pai). The sec-
tion Xε

Hi
= [Xε, Hi]/SXε(Hi) is a nearly nonsingular module for Hi/Oi. The

set {ni | i ∈ I } is unbounded.

Proof. Adopting all the notation of this section, we may assume that
O = Of = { (Gi, Ni) | i ∈ I } and write

O = Oimprim ∪ O1 ∪ O2 ,

where Ok = { (Gi, Ni) | i ∈ Ik } (for k = 1, 2) consists of those (Gi, Ni) ∈ Oprim

that come under Proposition 6.3(k). One of these three subsets of O is a Kegel
cover.

If Oimprim is a Kegel cover, then so is Pimprim = { (Gj , Nj) | j ∈ J } of
Proposition 6.4. For each j ∈ J , set Hj = 〈gGj 〉 and Oj = Hj ∩ Nj . By that
proposition and Lemma 2.6, K = { (Hj , Oj) | j ∈ J } is a Kegel cover as in the
alternating case of the theorem. (As G is infinite, |∆j | is unbounded.)

If Oprim = O1 ∪ O2 is a Kegel cover, then for all i ∈ Iprim set Ai =
〈gGi〉, Mi = Ai ∩ Ni, and Pi = kerAi

(Xi). By Lemma 2.6 the abbrevia-
tion { (Ai, Mi) | i ∈ I } of O is a Kegel cover with Ai/Mi � Gi/Ni. Therefore
{ (Ai, Pi) | i ∈ I } is a sectional cover of G with Ai/Pi � Ai kerGi

(Xi)/ kerGi
(Xi),

a normal subgroup of Gi/ kerGi
(Xi). As the generating set gGi of Ai acts triv-

ially on all composition factors other than Xi, the kernel Pi is unipotent. If Pi

were not contained in Mi, then the simple group Ai/Mi = PiMi/Mi would be
isomorphic to the unipotent group Pi/Pi∩Mi, which is not the case. Therefore
Mi ≥ Pi and

Ai/Mi � Ai/Pi

/
Mi/Pi

is simple.
If O1 is a Kegel cover, then by Proposition 6.3(1) we have that Pi = Mi

and Ai/Pi � Alt(∆i). The module Xi is natural for Ai/Pi with g of degree d,
so the permutation degree of g on ∆i is at most 2d. Thus, with Hi = Ai and
Oi = Pi, K = { (Hi, Oi) | i ∈ I1 } is a Kegel cover as in the alternating case of
the theorem. (Again |∆i| is unbounded.)

Assume now that Oimprim ∪ O1 is a Kegel cover. Therefore, as in the
alternating case, we have an alternating Kegel cover K = { (Hi, Oi) | i ∈ I }
in which the permutation degree of the element g is nonzero but bounded by
some δ. Order the index set I by

i ≺ j ⇐⇒ Hi < Hj and Hi ∩ Oj = 1 ,
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for all (Hi, Oi) and (Hj , Oj) from the Kegel cover K. Let F be an ultrafilter on
I containing F(I,�), and let ∆ be the ultraproduct over F of the sets ∆i. Then
by Lemma 2.9 there is a homomorphism of G into Sym(∆) with the image
of g of nonzero but finite degree and so a nonidentity in FSym(Ω). Since
G is infinite and simple, G is embedded in Alt(Ω). As Oimprim ∪ O1 is an
abbreviation of O, we have the alternating case of the theorem in full.

We assume for the balance of the proof that G does not come under the
alternating case of the theorem. In particular O2 and { (Ai, Mi) | i ∈ I2 } are
Kegel covers which are abbreviations of O. By Proposition 6.3(2) we have, for
all i ∈ I2, that Mi/Pi = Z(Ai/Pi) and Ai/Pi is a quasisimple classical group
with nearly natural module Xi.

For each i ∈ I2, let

Ai/Pi � ClFi
(X+

i , X−
i , fi) � Clni

(pai) ,

where char Fi = charF = p and fi is a nondegenerate form of type Cl on
X+

i ×X−
i with respect to the automorphism σi of Fi or a nonsingular quadratic

form on Xε
i = (X−ε

i )1 (where we set σi = 1). By coloring, { (Ai, Mi) | i ∈ I2 }
has a subcover { (Aj , Mj) | j ∈ J } in which each Cl is of a fixed classical
type from {SL,Sp,SU,Ω}. By Proposition 3.12 finite symplectic groups in
characteristic 2 can be viewed as orthogonal groups. Thus we may additionally
assume that (Cl, p) �= (Sp, 2), the corresponding groups being included under
(Cl, p) = (Ω, 2).

Order J by

i ≺ j ⇐⇒ Ai < Aj and Ai ∩ Pj = 1 .

Let F be an ultrafilter on J containing F(J,�). Set

L =
∏
F

Fj , Xε =
∏
F

Xε
j , f =

∏
F

fj , σ =
∏
F

σj ,

so that Xε (for ε = ±) is a vector space over the field L of characteristic p,
and f is a form of type Cl on X+ ×X− with respect to σ or a quadratic form
on Xε = (X−ε)1. As in Theorem 2.10(3), such a pairing is nondegenerate,
because each fj is, and such a quadratic form is nonsingular. The field L is
an ultraproducts of perfect fields of characteristic p, so L itself is perfect of
characteristic p.

As in Theorem 2.10(2-3), G acts as a subgroup of ClL(X+, X−, f) with the
element g having degree d. Identify G with its image in ClL(X+, X−, f). The
group G is simple and g has finite degree, so that in fact, G ≤ FClL(X+, X−, f).
As G is not linear in characteristic p, Xε is infinite dimensional. In particular,
the nj (= dimFj

Xj) are unbounded.
Propositions 6.2–6.4 now apply to the representation of G on Xε. As we

are not in the alternating case, there is a subset J ′ of J such that

{ (Aj , Pj) | j ∈ J ′ }
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is a quasisimple Kegel cover with each Pj unipotent. Furthermore, for each
j ∈ J ′, the unique Aj-composition factor in Xε on which g acts nontrivially
is a nearly natural module for the finite classical group Aj/Pj . Therefore
the module [Xε, Aj ]/SXε(Aj) is a nearly nonsingular module for Aj/Pj by
Propositions 4.7 and 4.9.

For each j ∈ J ′, set Hj = A
(∞)
j and Oj = Hj ∩ Pj . By Lemma 2.6,

{ (Hj , Oj) | j ∈ J ′ } is a perfect, quasisimple Kegel cover of G in which
Hj/Oj � Aj/Pj . Choose 0 ∈ J ′ and let J ′′ = { j ∈ J ′ |H0 ≤ Hj , H0∩Oj = 1 }.
As Oj and Pj are unipotent while H0 and Hj are perfect, we have Hj =
〈HHj

0 〉 = 〈HAj

0 〉 for each j ∈ J ′′. By Lemma 2.6 the abbreviation K =
{ (Hj , Oj) | j ∈ J ′′ } of O is a quasisimple Kegel cover, and it has all prop-
erties required under the classical case of the theorem. (Note that g might not
be contained in Hj .)

7. The alternating case

In this section we prove

(7.1) Theorem ([13, Th. 5.2]). Let G be a locally finite simple group
with a faithful representation as a finitary linear group. Assume that G has a
Kegel cover S = { (Gi, Ni) | i ∈ I } with all Kegel quotients Gi/Ni alternating.
Then there is a set Ω with G � Alt(Ω).

(7.2) Theorem. Let G be a locally finite simple group with a faithful
representation as a finitary linear group as in the Alternating Case, Theorem
6.5(1). Then there is a set Ω with G � Alt(Ω).

The set of Kegel quotients for an abbreviation of a Kegel cover S is con-
tained in the set of Kegel quotients for S. Therefore by Theorem 6.5 a group
G as in Theorem 7.1 must come under the Alternating Case, and Theorem 7.1
follows directly from Theorem 7.2.

In the Alternating Case, Theorem 6.5(1), the infinite locally finite group
G is a subgroup of Alt(∆) for some ∆. Theorem 7.2 is thus a consequence of
the known and elementary

(7.3) Theorem ([31], [39]). An infinite, simple subgroup of Alt(∆) is
isomorphic to Alt(Ω), for some Ω.

Proof. We sketch a proof using our methods. Note that for this result we
appeal to Jordan’s Theorem 4.2 but not to CFSG.

Let G be an infinite simple finitary permutation group as in the theorem.
Let g be a nontrivial element of G. Among all embeddings G ≤ Alt(Ω), choose
one in which the degree k of g on Ω is minimal. We may assume that G is
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transitive on Ω. Let L = { (Gj , Nj) | j ∈ J } be a Kegel cover for G with
g ∈ Gj \ Nj and Gj = 〈gG ∩ Gj〉, for all j ∈ J .

Let Ltrans consist of those pairs (Gj , Nj) from L with 〈gGj 〉 having a
single orbit Ωj on Ω in which g acts nontrivially, that orbit having |Ωj | >

max(k c(k), k2). If Ltrans is not a Kegel cover then, by Lemma 2.9 and a
coloring argument as in Proposition 6.2, we can realize G via an ultraproduct
as a finitary permutation group in which the degree of g is smaller than that
on Ω, against assumption.

Therefore Ltrans is a Kegel cover. Replacing Gj by 〈gGj 〉, we may assume
that, for each (Gj , Nj) from Ltrans, the Gj-orbit Ωj is the support of Gj in Ω.
Let Lprim consist of those (Gj , Nj) from Ltrans with Gj primitive on Ωj . If
Lprim is not a Kegel cover then its complement Limprim in Ltrans is. In that
case, by Lemma 2.9 and an argument similar to that of Proposition 6.4, we can
again realize G via an ultraproduct as a finitary permutation group in which
the degree of g is smaller than that on Ω, against assumption. Therefore Lprim

is a Kegel cover.
By Jordan’s Theorem 4.2 each Gj from the Kegel cover Lprim induces

either Sym(Ωj) or Alt(Ωj) on its support Ωj . As G ≤ Alt(Ω), in fact, Gj =
Alt(Ωj) and Nj = 1.

Let x be any element of Alt(Ω). Then the support of x is finite and so
contained in some Ωj , since G is transitive. Therefore x ∈ Gj ≤ G. This
reveals G as Alt(Ω).

Remarks. (1) A similar argument proves that any infinite simple section
of Alt(∆) is isomorphic to Alt(Ω), for some Ω, a result due to Segal [39].

(2) A consequence of these arguments is that every Kegel cover of an
alternating group Alt(Ω) has an abbreviation that is natural; that is, it equals
{ (Alt(Ωi), 1) | i ∈ I }, where Ω is the direct limit of its finite subsets Ωi, for
i ∈ I. This can be proved directly. See [15, Prop. 3.6] and [13, Th. 8.1].

(3) The paper [13] contains two other characterizations of alternating
groups: the infinite locally finite simple group G is alternating either if it is
finitary in characteristic 0 ([13, Th. 1]) or if it has an alternating Kegel cover
in which the degree of some nonidentity element is bounded ([13, Th. 5.1]).
As with Theorem 7.1 above, both of these can be proved by reduction to The-
orem 7.2. Indeed, for a group to be in the Classical Case, Theorem 6.5(2),
all finitary representations are in positive characteristic p; so a finitary group
in characteristic 0 must belong to the Alternating Case, and hence be alter-
nating by Theorem 7.2. (Alternating groups are finitary in all characteristics,
including 0.) A locally finite simple group G with a nonidentity element whose
degree is bounded in a Kegel cover K is finitary by Corollary 2.11. If all the
Kegel quotients of K are alternating, then the same is true of any abbreviation
of K. Such a finitary G cannot then come under the Classical Case, Theorem
6.5(2), and so must be an alternating group by Theorem 7.2.
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8. The classical case

In this section we handle the direct part of Theorem 1.1 in the classical case
of Theorem 6.5(2). As in Theorem 6.5(2), let the locally finite simple group G

be contained in FClL(X+, X−, f) with K a perfect, quasisimple Kegel cover of
type Cl for (Cl, p) �= (Sp, 2), where p (> 0) is the characteristic of the perfect
field L. For Cl = SU let σ be the associated automorphism of L of order 2,
and in all other cases let σ = 1.

Recall that, for A ≤ G, we write Xε
A = [Xε, A]/SXε(A), a section of Xε

covering all nontrivial A-composition factors in Xε.
Set

P = {P | P = P ′, P/Op(P ) � ClKP
(W+

P , W−
P , fP ) � ClnP

(KP ), nP > 10 ,

Op(P ) ≤ ker Xε
P , P finite with Xε

P nearly nonsingular for P/Op(P )}.

As (Cl, p) �= (Sp, 2) and by Propositions 4.7, 4.10, and 4.11, we can take
KP ≤ L and view W ε

P as a KP P -submodule of Xε
P (= L⊗KP

W ε
P ). Also there

is a constant κP with fP equal to the form induced on W ε
P by κP f , the form

fP being of type Cl with respect to σP = σ|KP
.

Note that H ∈ P for all (H, O) ∈ K. We are particularly interested in the
quasisimple members of P:

Q= {Q | Q = Q′ � ClKQ
(W+

Q , W−
Q , fQ) � ClnQ

(KQ), nQ > 10 ,

Q finite with Xε
Q = [Xε, Q] nearly nonsingular for Q}.

(8.1) Proposition. For all P ∈ P, P splits over Op(P ). Each comple-
ment Q to Op(P ) in P belongs to Q with nQ = dimL Xε

Q = dimL Xε
P . In

particular �-root subgroups of Q, thought of as ClKQ
(W+

Q , W−
Q , fQ), are con-

tained in �-root subgroups of FClL(X+, X−, f).

Proof. As Xε
P contains all nontrivial compositions factors in Xε for P , we

have kerP Xε
P = Op(P ). Since P is finite, there is in Xε a P -invariant finite

dimensional subspace U with Xε = U⊕U ′, for some U ′ ≤ CXε(P ). Now perfect
P is faithful in its action on U , so the extension splits by Proposition 4.6.

Each complement then belongs to Q by Proposition 4.7.
As mentioned above, we can take Q = ClKQ

(W+
Q , W−

Q , fQ) ∈ Q, for
KQ ≤ L and W ε

Q a KQQ-submodule of Xε
Q = L ⊗KQ

W ε
Q. The form fQ

is then the appropriate restriction of κQ f for some constant κQ. Since �-
root elements are defined in terms of commutator dimensions and the trivi-
ality of the form on these commutators, the element t ∈ Q is an �-root el-
ement of ClKQ

(W+
Q , W−

Q , fQ) if and only if it is an �-root element of G ≤
FClL(X+, X−, f). Indeed the �-root subgroup of Q determined by t is within
the �-root subgroup of FClL(X+, X−, f) determined by t.
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Remark. At this point the classification could be finished by appealing
to work on groups generated by 1- and 2-root elements, particularly [8], [9].
We choose not to do that since these results are difficult (appealing in part
to Timmesfeld’s deep work on abstract root subgroups) and such an approach
would also require special handling of certain cases (in particular L = F2). We
have enough information to identify G directly without increasing the length
of the argument significantly.

(8.2) Proposition. G has the quasisimple subgroup cover Q of type Cl,
and [Xε, Q] is a nearly nonsingular module for each Q ∈ Q.

Proof. C = { (P, Op(P )) |P ∈ P } is a quasisimple Kegel cover since it
contains K. Therefore it is enough to show that, for a fixed but arbitrary
H ∈ P, there is a Q ∈ Q with H ≤ Q.

For each P ∈ P set

sP = dimL SX+(P ) + dimL SX−(P ) .

Let P ∈ PH = {N | (N, Op(N)) ∈ CH }. If sP �= 0 then we shall find a
Q ∈ PP with sQ < sP . Replacing P with Q and continuing in this manner,
we ultimately reach a Q ∈ PH with sQ = 0. Proposition 4.10 then says that
Q is quasisimple with [Xε, Q] nearly nonsingular. That is, H ≤ Q ∈ Q, which
proves the proposition.

Assume now that sP �= 0. Let (N, Op(N)) ∈ PP ⊆ PH , and let N0 be a
complement to Op(N) in N . We may assume nN > nP + 8 . We write N̄ for
N/Op(N), W̄ ε for W ε

N , and K̄ for KN . As P ≤ N , Xε
P is a section of Xε

N ,
both being nearly nonsingular. Since Xε

N = L ⊗KN
W ε

N , the module W̄ ε
P̄

=
[W̄ ε, P̄ ]/SW̄ ε(P̄ ) is then a nearly nonsingular P̄ /Op(P̄ )-section in W̄ ε = W ε

N .
First assume that Cl ∈ {SL,Sp,SU}. By Proposition 8.1 we may choose

a complement P0 ∈ Q to Op(P ) in P and let T be a 1-root subgroup of P0,
which is contained in a 1-root subgroup of FClL(X+, X−, f). Recall that T is
isomorphic to (KP ,+) if Cl �= SU and to ((KP )σP

,+) if Cl = SU. Since P is
perfect and Op(P ) is not central (by Proposition 4.5), we have [Op(P ), P0] �= 1;
therefore we can choose an a ∈ Op(P ) with T a �= T . Set P1 = 〈P0, T

a〉 �
P̄1. Thus [W̄ ε, P̄1] = SW̄ ε(P̄1) ⊕ W̄ ε

P̄0
with dimK̄ SW̄ ε(P̄1) ≤ 1 by Proposition

4.10(1). There are two cases:

dimK̄ SW̄+(P̄1) + dimK̄ SW̄−(P̄1) = 1 or 2 .

We begin with the first case, which can only occur when Cl = SL. By
symmetry we may assume that SW̄+(P̄1) has dimension 1 and SW̄−(P̄1) = 0̄.
Choose s ∈ [X+, P1] (≤ [X+, N ]) so that its image s̄ in X+

N = [X+, N ]/SX+(N)
has SW̄+(P̄1) = K̄s̄. (Recall that W̄+ = W+

N is contained in X+
N .)

Let the KP -transvection (1-root) subgroup T of P0 be contained in the
L-transvection subgroup TvT ,wT

of ClL(X+, X−, f). In N0, let T0 = N0 ∩
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TvN ,wN
= N ∩ TvN ,wN

be a KN -transvection subgroup of N0 (and N) chosen
with f(vT , wN ) �= 0 �= f(vN , wT ) (possible as [W̄ ε, P̄ ] has large codimension in
W̄ ε). Then by Lemma 3.18(1), 〈T0, T 〉 � SL2(K̄), and T1 = N ∩ TvT ,wT

is a
KN -transvection subgroup of N containing T . Next in N0 find a KN -trans-
vection subgroup T2 = N ∩ TvN ,wN+x where f(vT , x) = 0 (= f(vN , x)), f(s, x)
�= 0, and x /∈ [X−, P1]. By Lemma 3.18(2),

〈T̄0, T̄1, T̄2〉 � 〈T0, T1, T2〉 � K2
N : SL2(KN ).

Set A = TvT ,wT +x ∩ 〈T0, T1, T2〉 = TvT ,wT +x ∩ N , a KN -transvection subgroup.

The group Q̄1 = 〈Ā, P̄1〉 ≤ N̄ has [W̄+, Q̄1] = [W̄+, P̄1] of dimension nP +1
and [W̄−, Q̄1] = [W̄−, P̄1] ⊕ K̄x̄, also of dimension nP + 1. The subgroup P̄1

is uniserial with only two composition factors on [W̄+, Q̄1], one a submodule
spanned by s̄. As f(s, wT + x) �= 0, Ā moves K̄s̄; so Q̄1 acts irreducibly on
[W̄+, Q̄1], hence also on [W̄−, Q̄1]. By Proposition 4.12(1), Q̄1 � SLnP +1(K̄)
with SW̄+(Q̄1) = 0̄ = SW̄−(Q̄1).

For Q = 〈A, P 〉 ∈ PP , we have [X+, Q] = [X+, A] + [X+, P ] = [X+, P ]
and [X−, Q] = [X−, A] + [X−, P ]; so dimL [X−, Q] ≤ 1 + dimL [X−, P ]. Also

dimL Xε
Q = nQ = 1 + nP = 1 + dimL Xε

P .

Therefore

sP − sQ =
(
dimL SX+(P ) + dimL SX−(P )

)
−

(
dimL SX+(Q) + dimL SX−(Q)

)
=

(
dimL [X+, P ] − dimL X+

P + dimL [X−, P ] − dimL X−
P

)
−

(
dimL [X+, Q] − dimL X+

Q + dimL [X−, Q] − dimL X−
Q

)
≥

(
dimL [X+, P ] − dimL X+

P + dimL [X−, P ] − dimL X−
P

)
−

(
dimL [X+, P ] − (1 + dimL X+

P )

+ (1 + dimL [X−, P ]) − (1 + dimL X−
P )

)
≥ 1 ,

as desired.
We now move to the second case for Cl ∈ {SL,Sp,SU}, where each sin-

gular radical SW̄ ε(P̄1) has dimension 1 and is spanned, say, by s̄ε. Choose
vectors w̄ε ∈ W̄ ε \ [W̄ ε, P̄1] with fN (w̄+, w̄−) = 0̄ but fN (w̄+, s̄−) �= 0̄ and
fN (s̄+, w̄−) �= 0̄. (If we are not in the case Cl = SL, then we require that
w̄+ = w̄−.) Let Ā be the 1-root subgroup Tw̄+,w̄− of N̄ , and set Q̄1 = 〈Ā, P̄1〉.

Then Q̄1 acts on [W̄ ε, Q̄1] of dimension nP +2, being spanned by [W̄ ε, P̄1]
and w̄ε. The group P̄1 is uniserial on [W̄ ε, P̄1] with only two composition
factors, one a submodule spanned by s̄ε.
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We first claim that the form induced by fN on [W̄+, Q̄1] × [W̄−, Q̄1] is
nondegenerate. (That is, SW̄ ε(Q̄1) = 0̄.) Suppose 0̄ �= x̄+ ∈ ⊥[W̄−, Q̄1]
∩[W̄+, Q̄1]. As fN (s̄+, w̄−) �= 0, ⊥[W̄−, Q̄1] meets [W̄+, P̄1] trivially. Therefore
[W̄+, Q̄1] = [W̄+, P̄1]⊕ K̄x̄+. But then s̄− ∈ [W̄+, Q̄1]⊥, which is not the case.
Thus ⊥[W̄−, Q̄1] ∩ [W̄+, Q̄1] = 0̄. Similarly [W̄−, Q̄1] ∩ [W̄+, Q̄1]⊥ = 0̄, so fN

is nondegenerate as claimed.
Next we prove that Q̄1 is irreducible on [W̄ ε, Q̄1]. If M̄+ is a Q̄1-submodule

of [W̄+, Q̄1], then M̄− = (M̄+)⊥∩ [W̄−, Q̄1] is a Q̄1-submodule of [W̄−, Q̄1]. If
k is the dimension of [W̄ ε, Q̄1] then dim M̄+ +dim M̄− = k, so at least one M̄ ε

has dimension greater than or equal to k/2. We can assume, without loss, that
dim M̄+ ≥ k/2; so, in particular, M̄+ ∩ [W̄+, P̄1] is not confined to SW̄+(Q̄1).
Therefore M̄+ contains [W̄+, P̄1], which has codimension 1 in [W̄+, Q̄1]. As
fN (s̄+, w̄−) �= 0, Ā moves s̄+ ∈ M̄+, hence [W̄ , Ā] = K̄w̄+ ≤ M̄+. But now

[W̄+, Q̄1] ≥ M̄+ ≥ [W̄+, P̄1] ⊕ K̄w̄+ = [W̄+, Q̄1] .

Therefore Q̄1 is irreducible on [W̄+, Q̄1] and so also on [W̄−, Q̄1] by nondegener-
acy. By Proposition 4.12(1), Q̄1 � ClnP +2(K̄) with SW̄+(Q̄1) = 0̄ = SW̄−(Q̄1).

Again we lift Ā to a 1-root subgroup A of N and set Q = 〈A, P 〉 ∈ PP .
We have [Xε, Q] = [Xε, A] + [Xε, P ], so that dimL [Xε, Q] ≤ 1 + dimL [Xε, P ].
Also

dimL Xε
Q = nQ = 2 + nP = 2 + dimL Xε

P .

Calculating as above, we find

sP − sQ =
(
dimL SX+(P ) + dimL SX−(P )

)
−

(
dimL SX+(Q) + dimL SX−(Q)

)
≥

(
dimL [X+, P ] − dimL X+

P + dimL [X−, P ] − dimL X−
P

)
−

(
(1 + dimL [X+, P ]) − (2 + dimL X+

P )

+ (1 + dimL [X−, P ]) − (2 + dimL X−
P )

)
≥ 2 .

Now we may assume that Cl = Ω. By Proposition 8.1 we may choose a
complement P0 to Op(P ) in P . Let T be a 2-root (Siegel) subgroup of P0, and
a ∈ Op(P ) with T a �= T . Set P1 = 〈P0, T

a〉 � P̄1. Thus [W̄ ε, P̄1] = SW̄ ε(P̄1) ⊕
W̄ ε

P̄0
with 0 < dimK̄ SW̄ ε(P̄1) = d ≤ 2. As Cl = Ω, we have W̄ ε = (W̄−ε)1 and

Xε = (X−ε)1. Dropping the exponents, we do our calculations in W̄ = W̄+.
Let W̄0 be the nonsingular (but possibly degenerate) space [W̄ , P̄0], and

let the radical of W̄0 be Z̄, which is either 0̄ or nonsingular of dimension 1.
Choose Ū0 ≤ W̄⊥

0 to be an 8-dimensional, nondegenerate subspace of W̄ with
SW̄ (P̄1) = Ū0 ∩ [W̄ , P̄1].
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Let Ū1 be a nonsingular complement to SW̄ (P̄1) in Ū0, and choose a totally
singular subspace W̄s ≤ W̄0 with dimK̄ W̄s = dimK̄ Ū1 = 8−d. We then choose
a subspace Ȳ of dimension 8 − d on the diagonal of W̄s ⊕ Ū1. Therefore Ȳ is
disjoint from W̄s and Ū1 and is isometric to Ū1. Thus we have nonsingular

W̄0 ⊕ Ū0 = [W̄ , P̄1] ⊕ Ū1 = [W̄ , P̄1] ⊕ Ȳ = Ū ,

say, of dimension nP + 8. The radical of Ū is equal to Z̄, the radical of W̄0.
Let Ā0 be the largest subgroup of N̄ that is trivial on Ȳ ⊥, so that qua-

sisimple Ā = Ā′
0 acts irreducibly on nonsingular Ȳ = [Ū , Ā] = [W̄ , Ā] modulo

its radical, which is either 0̄ or nonsingular of dimension 1. Set Q̄1 = 〈Ā, P̄1〉.
We claim that Q̄1 is irreducible on Ū = [W̄ , Q̄1] modulo the radical Z̄.

Let M̄ (> Z̄) be a nontrivial Q̄1-submodule of Ū . Either M̄ or M̄⊥ ∩ Ū has
dimension at least half that of Ū . Replacing M̄ by M̄⊥ if necessary, we have
dimK̄ M̄ ≥ �(nP + 8)/2 � > 9. Any P̄0-invariant subspace of Ū either contains
W̄0 of dimension nP or is contained in W̄⊥

0 ∩ Ū = Z̄ ⊕ Ū0 of dimension at
most 9. Thus M̄ contains W̄0; indeed, then P̄1-invariant M̄ contains [W̄ , P̄1].
As Ū = [W̄ , P̄1] ⊕ [W̄ , Ā], we now consider [M̄, Ā] ≤ [W̄ , Ā] = Ȳ . By design
[[W̄ , P̄1], Ā] �= 0̄, so we are done except possibly when char K̄ = 2 and [M̄, Ā]
is the radical of Ȳ , nonsingular and of dimension 1. The quasisimple group
Ā is generated by its 2-root elements t̄, but for such an element [M̄, t̄] ≤
[M̄, Ā] ∩ [W̄ , t̄] = 0̄. In that case all 2-root elements of Ā would fix M̄ , giving
[M̄, Ā] = 0̄ which is not the case. We conclude that Q̄1 is irreducible on Ū ; so,
by Proposition 4.12(2), Q̄1 � ΩK̄(Ū , fN |Ū ) is quasisimple with SW̄ (Q̄1) = 0̄.

Using Proposition 8.1 we lift Ā to a quasisimple subgroup A of N0 with
[Xε, A] nearly nonsingular (as [Xε, N0] is). We set Q = 〈A, P 〉 ∈ PP . Again we
have [Xε, Q] = [Xε, A]+[Xε, P ], so that dimL [Xε, Q] ≤ (8−d)+dimL [Xε, P ].
Also

dimL Xε
Q = nQ = 8 + nP = 8 + dimL Xε

P .

Therefore

sP − sQ = 2(dimL SX+(P ) − dimL SX+(Q))

= 2
(
dimL [X+, P ] − dimL X+

P

−(dimL [X+, Q] − dimL X+
Q )

)
≥ 2

(
dimL [X+, P ] − dimL X+

P

−(8 − d + dimL [X+, P ] − (8 + dimL X+
P ))

)
≥ 2d ,

as desired.
This completes the proof of the proposition.
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(8.3) Proposition. Let Q be the quasisimple cover for G from Proposi-
tion 8.2, and assume that Q has type Ω in characteristic 2. Then either Qorth =
{Q ∈ Q | [Xε, Q] is nondegenerate } or Qsymp = {Q ∈ Q |Rad([Xε, Q], f) =
Rad([Xε, G], f) �= 0 } is a subcover.

Proof. Let Q ∈ Q. Color the member P of the cover QQ green if 0 �=
Rad([Xε, Q], f) ≤ Rad([Xε, P ], f) and white otherwise. If the set GQ of those
P that are colored green is a cover, then

0 �= Rad([Xε, Q], f) ≤ lim
−→P∈GQ

Rad([Xε, P ], f) = Rad([Xε, G], f) .

Because always dimL Rad([Xε, P ], f) ≤ 1, the subcover GQ is contained in the
subcover Qsymp.

Now we can assume that for no Q of Q is GQ a cover. Thus for each
Q the set WQ of white P ∈ QQ is a cover. Within P ∈ WQ, we can find
a nondegenerate quasisimple subgroup PQ ∈ Qorth containing Q. The set
{PQ |Q ∈ Q} is then a cover contained in the subcover Qorth.

We now let Y ε be the L-space [Xε, G]/Rad([Xε, G], f).
If (Cl, p) �= (Ω, 2), then by Proposition 8.2 we have Y ε = [Xε, G] and e,

the restriction of f to Y + × Y − (or Y ε = (Y −ε)1 if Cl = Ω), is nondegenerate
of type Cl. The quasisimple cover R = Q has [Y ε, Q] nearly natural for each
Q ∈ R.

If (Cl, p) = (Ω, 2), then by Proposition 8.3 either Qorth or Qsymp is a
quasisimple cover. If Qorth is a cover, then Y ε = [Xε, G] = 〈 [Xε, Q] |Q ∈
Qorth 〉 is nondegenerate for the restriction of the quadratic form f , while if
Qsymp is a cover, then [Xε, G] = 〈 [Xε, Q] |Q ∈ Qsymp 〉 is nonsingular but
degenerate for f . In particular, exactly one of Qorth and Qsymp is a cover; call
it R.

If R = Qorth, then e = f |Y ε is a nondegenerate quadratic form on Y ε, and
[Y ε, Q] is nearly natural for each Q ∈ R, an orthogonal quasisimple cover.

If R = Qsymp is a cover, then Rad([Xε, G], f) is nonsingular and of dimen-
sion 1 over the perfect field L. The quotient space Y ε = [Xε, G]/Rad([Xε, G], f)
is nondegenerate for the symplectic form e on Y ε induced by f (or, more pre-
cisely, by the symplectic form b associated with f). For each Q ∈ R, the
LQ-module [Y ε, Q] is a nearly natural module for the symplectic group Q.

Thus, in all cases, G ≤ FClL(Y +, Y −, e) with [Y ε, G] = Y ε, where e is a
nondegenerate form of type Cl and R is a quasisimple cover with [Y ε, Q] nearly
natural for each Q ∈ R, also of type Cl. (Note that we may be in the situation,
for p = 2, where G ≤ FΩL(X+, X−, f) whereas G ≤ FSpL(Y +, Y −, e); the
type Cl may have changed from Ω to Sp.)

If e is a classical σ-sesquilinear form and K is a finite subfield of L, then
we view σ as an automorphism of K when more properly we should talk of the
restriction of σ to K. (If Cl �= SU, then we set σ = 1.)
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(8.4) Lemma. (1) For Q ∈ R, there are a subfield KQ ≤ L, KQ-subspaces
V ε

Q ≤ [Y ε, Q], and a form eQ of type Cl (with respect to σ) such that [Y ε, Q] =
L ⊗KQ

V ε
Q and Q = ClKQ

(V +
Q , V −

Q , eQ) (where Q acts trivially on (V +
Q )⊥ =

[Y +, Q]⊥ and ⊥(V −
Q ) = ⊥[Y −, Q] ). The field KQ is unique and the KQ-spaces

V +
Q , and V −

Q are uniquely determined up to scalar multiplication by elements
of L. The form eQ is unique up to scalar multiplication by a constant c =
cσ ∈ KQ and is equal to κQ e|V ±

Q
for some constant κQ = κσ

Q ∈ L. (Here by
e|V ±

Q
we mean the appropriate restriction e|V +

Q ×V −
Q

or e|V +
Q

= e|V −
Q

. Note that
eQ depends not just on the subgroup Q but also on the particular choice of
modules V ε

Q.)

(2) Let Q = ClKQ
(V +

Q , V −
Q , eQ) as in (1), and let P ∈ R with P ≥ Q.

Then there are a unique subfield KP of L and unique KP -subspaces V ε
P of

[Y ε, P ] with V ε
P ≥ V ε

Q and P = ClKP
(V +

P , V −
P , eP ).

Proof. (1) As Q ∈ Q, we have Q � ClKQ
(W+

Q , W−
Q , fQ) with [Y ε, Q] nearly

nonsingular and indeed nearly natural for Q. By Proposition 4.10(3), Q acts
trivially on [Y +, Q]⊥ and ⊥[Y −, Q]. Part (1) then follows from Proposition
4.11, where we have identified KQ with its isomorphic image in L.

(2) As P ≥ Q = ClKQ
(V +

Q , V −
Q , eQ), the module [Y ε, Q], nearly natural for

Q, is contained in [Y ε, P ], nearly natural for P . By (1), there are a subfield KP

of L, KP -subspaces U ε
P ≤ [Y ε, P ], and a form dP with P = ClKP

(U+
P , U−

P , dP ).
Now [U ε

P , Q] has dimension at most dimL [Y ε, Q] = dimKQ
V ε

Q. Therefore by
Theorem 4.8, [U ε

P , Q] is nearly natural for Q. Applying Proposition 4.11 next
to Q ≤ P = ClKP

(U+
P , U−

P , dP ), we learn that KQ ≤ KP and that there are
KQ subspaces U ε

Q ≤ U ε
P and a form dQ with Q = ClKQ

(U+
Q , U−

Q , dQ). By (1),
there are scalars aε ∈ L with V +

Q = a+U+
Q and V −

Q = U−
Q a−. Set V +

P = a+U+
P

and V −
P = U−

P a−. Then P = ClKP
(V +

P , V −
P , eP ) with V ε

P ≥ V ε
Q, as desired.

By (1) a second pair of subspaces V ε
P having these properties would be scalar

multiples of the first. As distinct scalar multiples intersect trivially, the V ε
P are

unique. This gives (2).

Choose R ∈ R with dimL [Y ε, R] > 8. Let

S = RR = {Q ∈ R |Q ≥ R } ,

a quasisimple subgroup cover. By Lemma 8.4(1) there are a subfield KR of L,
KR-subspaces V ε

R ≤ Y ε, and a form eR with R = ClKR
(V +

R , V −
R , eR). Further-

more there is a constant κR = κσ
R with eR = κR e|V ±

R
. Let eY = κR e, so that

eY is a form of type Cl (with respect to σ) for which G ≤ FClL(Y +, Y −, eY ).
For each P ∈ S, let KP ≥ KR and V ε

P ≥ V ε
R be uniquely determined

as in Lemma 8.4(2), so that P = ClKP
(V +

P , V −
P , eP ) with eP = κP e|V ±

P
and

κσ
P = κP by Lemma 8.4(1).
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(8.5) Lemma. (1) The forms eP can be chosen so that, for all P ∈ S,
P = ClKP

(V +
P , V −

P , eP ) with eP = eY |V ±
P

.

(2) For Q, P ∈ S with Q ≤ P , we have KQ ≤ KP and V ε
Q ≤ V ε

P . Further-
more, with the choice of forms as in (1), eQ = eP |V ±

Q
.

Proof. (1) As KR ≤ KP , we have the constant cP = κRκ−1
P = cσ

P ∈ KP ,
and P = ClKP

(V +
P , V −

P , cP eP ). Here

cP eP = κRκ−1
P eP = κRκ−1

P (κP e|V ±
P

) = κR e|V ±
P

= eY |V ±
P

.

Therefore, if necessary replacing eP by cP eP , we have (1).
(2) KQ ≤ KP is immediate. Also V ε

Q ∩ V ε
P ≥ V ε

R, so uniqueness as in
Lemma 8.4(2) forces V ε

Q ≤ V ε
P . Furthermore eQ = eY |V ±

Q
= eY |V ±

P
|V ±

Q
= eP |V ±

Q
.

Set

K =
⋃

Q∈S
KQ ⊆ L

and

V ε =
⋃

Q∈S
V ε

Q ⊆ Y ε .

S is a local system for G; so that, by Lemma 8.5(2), {KQ |Q ∈ S } is a local
system for the field K and {V ε

Q |Q ∈ S } is a local system for the K-space
V ε. In particular K is a locally finite field. Let eV = eY |V ± , the restriction of
eY to V + × V − (when Cl �= Ω) or to V ε = (V −ε)1 (when Cl = Ω). Then eV

is a G-invariant form of type Cl with respect to σ. Indeed by Lemma 8.5(2),
eV = lim

−→Q∈S
eQ, the direct limit of the forms eQ, chosen according to Lemma

8.5(1). With this choice we then have Q = ClKQ
(V +

Q , V −
Q , eV |V ±

Q
) for each

Q ∈ S.
Theorem 1.1 is now a consequence of Theorems 6.1, 6.5, 7.2, and

(8.6) Theorem. With the notation of this section, eV is nondegenerate
and G = FClK(V +, V −, eV ).

Proof. The form eY is nondegenerate and Y ε = L ⊗K V ε, and so eV is
nondegenerate.

By construction, G ≤ FClK(V +, V −, eV ). We must prove the containment
in the other direction. Consider an arbitrary h ∈ FClK(V +, V −, eV ). Since K

is a locally finite field, FClK(V +, V −, eV ) is a locally finite group by Theorem
3.15.

By Lemmas 3.5 (when Cl = SL) and 3.6 (when Cl �= SL), there exist
appropriate finite dimensional K-subspaces U ε

h of V ε with eV |U±
h

nondegener-
ate and [V ε, h] ≤ U ε

h. As {V ε
Q |Q ∈ S } is a local system for V ε, we can choose



496 J. I. HALL

Q ∈ S with Q = ClKQ
(V +

Q , V −
Q , eV |V ±

Q
) and U ε

h ≤ [V ε, Q] = U ε
Q = K ⊗KQ

V ε
Q.

Then 〈h, Q〉 is a finite subgroup of quasisimple ClK(U+
Q , U−

Q , eV |U±
Q
). Therefore

there is a finite field Kh with KQ ≤ Kh ≤ K and 〈h, Q〉 ≤ ClKh
(V +

h , V −
h , eV |V ±

h
)

where V ε
h = Kh ⊗KQ

V ε
Q.

As {KP |Q ≤ P ∈ S } is a local system for the field K, there is a P ∈ S
with Kh ≤ KP and Q ≤ P , hence V ε

h ≤ V ε
P . But then h ∈ ClKP

(V +
P , V −

P , eV |V ±
P

)
= P ≤ G. That is, h ∈ G as desired, proving the theorem.
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[24] O. H. Kegel, Über einfache, lokal endliche Gruppen, Math. Z . 95 (1967), 169–195.

[25] O. H. Kegel and B. A. F. Wehrfritz, Locally Finite Groups, North-Holland Publ. Co.,
Amsterdam, American Elsevier Publ. Co., Inc., New York, 1973.

[26] M. J. Larsen and R. Pink, Finite subgroups of algebraic groups, preprint 1998.

[27] M. W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proc.
London Math. Soc. 50 (1985), 426–446.

[28] M. W. Liebeck and G. M. Seitz, Subgroups generated by root elements in groups of Lie
type, Ann. of Math. 139 (1994), 293–361.

[29] J. McLaughlin, Some groups generated by transvections, Arch. Math. Basel 18 (1967),
364–368.

[30] U. Meierfrankenfeld, Non-finitary simple locally finite groups, in Finite and Locally
Finite Groups (Istanbul, 1994) (B. Hartley, G. M. Seitz, A. V. Borovik, R. M. Bryant,
eds.), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci . 471 (1995), 189–212.
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